Радий. Радий камень


16 самых дорогих веществ в мире | Fresher

Наверное, вы догадывались, что золото – не самое дорогое вещество в мире, при пересчете на грамм. Даже не платина.

Попробуйте по новому взглянуть на 16 самых дорогих веществ по весу. Расположены в обратном порядке, по мере возрастания стоимости за грамм.

16. Шафран

Единственное вещество в этом списке, которое дешевле золота.

Стоимость: 11,13 доллара за грамм

Для чего он нужен: шафран является цветущим растением, которое можно использовать как натуральное лечебное средство от всего, начиная от депрессий и заканчивая менструальными циклами.

15. Золото

Стоимость: 56,73 долларов за грамм

Для чего он нужен: кроме традиционного использования в ювелирной промышленности, золото можно использовать в качестве электрического проводника и для предотвращения коррозии.

14. Родий

Стоимость: около 58 долларов за грамм

Для чего он нужен: родий используется главным образом в каталитических преобразователях для снижения углеродных выбросов автомобиля.

13. Платина

Стоимость: около 58 долларов за грамм

Для чего она нужна: платину можно использовать в качестве катализатора в научных экспериментах, носить в качестве украшений, и принимать в качестве противораковых препаратов.

12. Метамфетамин

Стоимость: 100 долларов за грамм

Для чего он нужен: наркотик с высокой степенью привыкаемости даёт эффект эйфории и пользуется популярностью среди молодёжи.

11. Рог носорога

Стоимость: 110 долларов за грамм

Для чего он нужен: рог ценится во Вьетнаме за его якобы способность лечить рак. Его медицинское применение также включает в себя лечение лихорадок и других болезней.

10. Героин

Стоимость: высококачественный героин может стоить до 131 доллара за грамм

Для чего он нужен: этот опиат вводят внутривенно, нюхают и курят, чтобы изменить подсознание. Также может вызывать судороги и даже кому.

9. Кокаин

Стоимость: 215 долларов за грамм

Для чего он нужен: кто-то говорит, для вечеринок, кто-то – чтобы развить пагубную привычку.

8. ЛСД

Стоимость: ЛСД в кристаллической форме стоит около 3000 долларов за грамм

Для чего он нужен: кто-то снова переживает 60-е, разумеется, за счёт галлюцинаций.

7. Плутоний

Стоимость: около 4000 долларов за грамм

Для чего он нужен: чтобы создавать всякие атомные штуки. Существует 2 вида плутония, один из которых является оружейным, а другой используется в ядерных реакторах.

6. Паинит

Стоимость: 9 тысяч долларов за грамм или 1800 долларов за карат

Для чего он нужен: считающийся самым редким драгоценным камнем в мире, он используется в качестве лечебного кристалла или просто как украшение.

5. Таффеит

Стоимость: примерно от 2,5 до 20 тысяч долларов за грамм или от 500 до 4 тысяч за карат

Для чего он нужен: драгоценный камень сиреневого цвета, как считают, в миллион раз более редок чем бриллианты. Вследствие чрезвычайной редкости используется только в качестве драгоценного камня.

4. Тритий

Стоимость: 30 тысяч долларов за грамм

Для чего он нужен: тритий используется для написания самосветящихся знаков «выход» в кинотеатрах, в школах и офисах.

3. Бриллианты

Стоимость: 55 тысяч долларов за грамм. Бесцветный камень может стоить более 11 тысяч долларов за карат, а цветные бриллианты стоят ещё больше.

Зачем он нужен: природные алмазы чаще всего используются в ювелирной промышленности. Также исключительная твёрдость алмаза находит своё применение в промышленности: его используют для изготовления ножей, свёрл, резцов и тому подобных изделий.

2. Калифорний 252

Стоимость: 27 миллионов долларов за грамм

Зачем он нужен: для элемента, который настолько дорог в производстве, изотопы калифорния не обладают никаким практическим применением. На Западе он был создан лишь единожды с момента своего открытия в 1950 году.

1. Антивещество

Стоимость: 62,5 триллиона долларов за грамм

Зачем он нужен: антиматерию в будущем теоретически можно использовать в качестве топлива для космических кораблей к другим планетам. Проблема в том, что для его производства требуются невероятно дорогие технологии, и чтобы создать всего 1 грамм, всему миру пришлось бы работать целый год (общемировой ВВП составляет 65 трлн. долларов).

Интересная статья? Лайкни или поделись с друзьями!

• Рубрика: драгоценности, рейтинги

www.fresher.ru

РАДИЙ | Энциклопедия Кругосвет

Содержание статьи

РАДИЙ – радиоактивный химический элемент II группы периодической системы, аналог бария; относится к щелочноземельным элементам. Стабильных изотопов не имеет; наиболее долгоживущие – 226Ra (период полураспада t1/2 = 1600 лет) и 228Ra (t1/2 = 5,75 года). Остальные изотопы (всего их известно 25) «живут» значительно меньше, некоторые – доли секунды; почти все они получены искусственно.

Радий в природе и его свойства.

Несмотря на сравнительно малое время жизни по сравнению с возрастом Земли (около пяти миллиардов лет), некоторые изотопы радия, хотя и в очень малых количествах, встречаются в природе. Происходит это благодаря существованию в природе трех радиоактивных рядов, в которых изотопы радия непрерывно образуются при распаде долгоживущих (так называемых материнских) радионуклидов: урана-238 (из него получается 226Ra), урана-235 (он дает 223Ra, t1/2 = 11,4 суток) и тория-232 (дает 228Ra и 224Ra, t1/2 = 3,7 суток). Очевидно, что чем меньше период полураспада данного радионуклида, тем меньше его содержание в минералах, даже самый долгоживущий, 226Ra, содержится в земной коре в количестве всего одной десятимиллиардной доли процента, обычно в тех же породах, в которых содержится уран.

Чистый радий – блестящий серебристо-белый металл, быстро тускнеющий на воздухе из-за образования на его поверхности оксида и нитрида. С водой реагирует более энергично, чем барий, выделяя водород. Плавится радий при 969° С, кипит при 1507° С, плотность – около 6 г/см3. Любые физические и химические свойства радия изучать трудно из-за его очень высокой радиоактивности. Радий непрерывно выделяет теплоту, и если нет условий для теплоотвода, металл быстро нагревается и может даже расплавиться. Продукт распада радия – радиоактивный газ радон. Радий вместе с продуктами своего распада излучает все три вида радиации – a-, b- и g-лучи. Из-за высокой радиоактивности радий и его соединения светятся в темноте, его бесцветные соли быстро желтеют, а затем приобретают коричневую, вплоть до черной, окраску; их водные растворы разлагают воду, выделяя из нее водород и кислород.

Если не считать сильной радиоактивности, химические свойства радия и его соединений мало отличаются от аналогичных свойств бария. Как и у бария, легко растворимы хлорид, бромид, иодид, нитрат радия, а фторид, карбонат и сульфат почти нерастворимы. Гидроксид Ra(OH)2 – сильная щелочь.

В поисках новых радиоактивных элементов.

Радий неотделим от имени открывших его супругов Кюри, которые посвятили его поискам, выделению и изучению свойств многие годы. Открытые в 1896 А.Беккерелем «урановые лучи» заинтересовали многих ученых, среди них были французский физик Пьер Кюри и его жена Мария Склодовская-Кюри.

ПОЧТОВЫЕ МАРКИ, посвященные Марии Склодовской-Кюри

Если Беккереля в основном волновали свойства «урановых лучей» и источник их энергии, то Кюри, будучи скорее химиком, задалась вопросом, является ли уран уникальным в этом отношении и нет ли других элементов с подобными свойствами Нужно было научиться точно измерять степень радиации. Сейчас такой вопрос решается просто с помощью приборов, например, счетчиков Гейгера, но они появились только в 1908, а фотопластинки были слишком грубым инструментом и требовали много времени для экспозиции и последующего проявления. Скорость опадания золотых листочков электроскопа тоже зависела от многих невоспроизводимых факторов. П.Кюри сконструировал электрометр, позволяющий точно измерять очень малые токи, измеряемые триллионными долями ампера – пикоамперами (пА). В приборе использовался открытый им вместе с братом Жаком пьезоэлектрический эффект – появление на гранях некоторых кристаллов при их сдавливании электрических зарядов (этот эффект используется, например, в кварцевых часах, в пьезозажигалках). Точно дозируя давление на кристалл, можно было компенсировать и, таким образом, измерять очень малые токи. Конструкция состояла из двух расположенных горизонтально с небольшим зазором металлических дисков, на которые подавалось напряжение около 100 В. Если между дисками находился только слой воздуха, тока не было, но если на нижний диск насыпали тонким слоем определенное количество какого-либо соединения урана, воздух благодаря ионизации под действием «урановых лучей» становился проводником, при этом между дисками протекал очень слабый ток, который можно было измерить и таким образом количественно и довольно точно определить мощность излучения.

Используя этот метод, Кюри начала тестировать одно вещество за другим – все, которые она только могла достать, одолжить в химических лабораториях, выпросить в минералогических музеях (она не только аккуратно возвратила образцы владельцам, но и выразила им благодарность в своей публикации). Из всех веществ, не содержащих уран, активность проявили только соединения тория.

Аналогичными исследованиями занимались и другие ученые. Одновременно и независимо от нее радиоактивность тория обнаружил немецкий физик Герхард Карл Шмидт (1865–1949). Это неудивительно: торий и уран были последними, самыми тяжелыми, элементами в таблице Менделеева тех времен, поэтому от них можно было ждать всяких неожиданностей. Об этом написал в последнем прижизненном издании (1906) своего учебника Основы химии и сам Менделеев: «Наивысшая, из известных, концентрация массы весомого вещества в неделимую массу атома, существующая в уране, уже a priori должна влечь за собою выдающиеся особенности».

Неожиданными оказались количественные результаты измерений. Так, взятый у Муассана металлический уран (он был получен восстановлением оксида углем и содержал примесь углерода) дал ток 23–24 пА; природный монацит (смешанный фосфат редких земель и тория) – 5 пА; чрезвычайно редкий минерал самарскит (смесь оксидов редкоземельных элементов, U, Fe, Nb, Ta и Ti) – 11 пА; черный торит ThSiO4 (обычно содержит примесь урана) – 14 пА, а прозрачные оранжевые кристаллы оранжита (невыветренный силикат тория) – 20 пА; черный оксид урана U2O5 – 27 пА; урановая смоляная руда (урановая смолка) из разных источников (она образует минералы уранинит или настуран примерного состава UO2) – от 16 до 83 пА; желтый минерал отенит Ca(UO2)2(PO4)2·(10–12)h3O – 27 пА; редкий природный минерал хальколит (торбернит) красивого зеленого цвета Cu(UO2)2(PO4)2·(8–12)h3O – 52 пА; желтый минерал карнотит K2(UO2)2V2O8·3h3O – 62 пА.

Результаты не соответствовали содержанию в минералах известных радиоактивных элементов – урана и тория. Так, хальколит, в котором масса урана составляет лишь около 50%, оказался вдвое активнее, чем чистый уран, синтезированный собственноручно М.Кюри искусственный хальколит (двойной фосфат меди – уранила) показал небольшую активность, которая приблизительно соответствовала содержанию в этой соли урана. Стало ясно, что в природных минералах, которые проявили наибольшую активность, содержится, помимо урана, какой-то другой, неизвестный элемент. «Активность этих минералов не представляла бы ничего удивительного, – записала Мария в лабораторном журнале, – если бы была пропорциональна количеству содержащегося в них урана или тория. Но это было не так. Некоторые из этих минералов проявили активность в три или четыре раза большую, чем надлежало по расчету для урана. Я тщательно проверила этот поразительный факт и не могла больше сомневаться в его правильности... Аномальная активность хальколита, обусловлена не его химическим составом; минерал, конечно, содержит в слабой пропорции элемент более активный, чем уран...». Не последнюю роль, возможно, сыграла и «подсказка» самого Беккереля: когда-то в беседе с Пьером Кюри он высказал предположение о том, что обнаруженная им радиоактивность урана может быть связана с какими-то очень активными примесями в этом элементе.

Все известные элементы были уже изучены и не обладали нужным свойством. Химический анализ радиоактивных минералов соответствовал их формуле, это означало, что нового элемента в этих минералах исключительно мало, поэтому этот элемент (возможно, не он один) быть очень активным! Как только стало ясно, что в урановых и ториевых рудах содержится неизвестное вещество с очень высокой радиоактивностью, началась работа по его выделению. Завершилась она выдающимся открытием новых химических элементов – полония и радия.

Впоследствии Кюри писала по этому поводу: «Я назвала радиоактивностью способность испускать такие лучи и создала новый термин, принятый с тех пор в науке». На латыни radius – палочка, спица в колесе, а также радиус круга и луч; radiare – испускать лучи, сиять; в английском слово radiant (излучающий) появилось еще в 15 в., т.е. термин, введенный Кюри, должен был означать самопроизвольное («активное») излучение некоторыми веществами.

Стало ясно, что в урановой смолке присутствует неизвестный радиоактивный элемент (или несколько элементов). Тщательный химический анализ этого вещества привел в 1898 к открытию нового радиоактивного элемента – полония.

В первом исследовании урановой смолки супруги Кюри упустили важное обстоятельство. Оказалось, что если из азотнокислого раствора осадить сульфат бария (потом его перевели в растворимый хлорид), он обнаруживает радиоактивность. Стало очевидным, что это еще один радиоактивный элемент – на этот раз аналог не висмута, а бария. Для того чтобы сконцентрировать этот элемент, был использован метод многократной перекристаллизации – тот самый, с помощью которого были разделены очень близкие по свойствам редкоземельные элементы. В данном случае он был основан на разной растворимости солей бария и радия. Так, в 100 г воды при 20° С растворяется 35,7 г хлорида бария, а хлорида радия – почти в два раза меньше, поэтому если из раствора выделить в осадок 1/3 хлорида бария, то хлорида радия выделится 2/3. По этому методу (он называется фракционной кристаллизацией) раствор хлоридов частично выпаривают до образования кристаллов, в которых доля радия выше, чем в растворе. Эти кристаллы снова растворяют и повторяют все сначала. Таким образом, доля радия в выпадающих кристаллах постепенно растет. Раствор, обедненный радием, не выбрасывают, а подвергают дробной кристаллизации. Кроме бария и радия (и урана) исходный минерал содержал довольно много свинца, кремния, тантала, протактиния, железа, тория, актиния, полония, и все эти элементы следовало предварительно отделить от бария (с ничтожной примесью радия). Этот метод требует очень большого числа операций, но другого способа выделить новый элемент не было. На каждой стадии соответствующую фракцию с помощью электрометра проверяли на радиоактивность и таким образом контролировали степень обогащения.

Постепенно супруги Кюри (с помощью Бемона) получили препарат бария, который был в 60 раз активнее, чем чистый уран, после еще нескольких перекристаллизаций – уже в 900 раз более активный, Но опыты пришлось прекратить: последняя, самая активная, фракция была такой маленькой, что дальше работать с ней было уже невозможно – для выделения нового элемента нужны были не граммы, и даже не килограммы руды, а тонны.

26 декабря 1898 была опубликована статья Мосье Пьера Кюри, мадам П. Кюри и мосье Г.Бемона, О новом сильно радиоактивном веществе, содержащемся в урановой смолке, в которой сообщалось, что был исследован спектр обогащенного препарата, который был в 60 раз активнее урана, и в нем обнаружена едва заметная новая линия в ультрафиолетовой области (длина волны 381 нм), эта же линия была отчетливо видна в последнем образце, в 900 раз более активном, чем уран. Интенсивность спектральной полосы была пропорциональна радиоактивности препаратов, что служило хорошим доводом приписать ее новому радиоактивному элементу. Его решили назвать радием. Попытки определить атомную массу нового элемента (без этого химики не признали бы его за новый элемент, а не радиоактивный изотоп бария) дали значение, почти не отличающееся от бария. Вывод в статье был однозначным: «В новом веществе все еще очень велико содержание бария. Поэтому радиоактивность радия должна быть огромной».

С этой радиоактивностью не все было в порядке. Так, 13 июля 1899 П.Кюри отметил в лабораторном журнале непонятный факт – препарат сульфата радия, активность которого в начале года составляла от 150 до 200 единиц, в середине июля показывал уже 600. На той же странице – аналогичная запись М.Кюри – карбонат радия с активностью 1200 вдруг через полгода показал активность 3000. Объяснить это супруги не могли, лишь впоследствии из работ Резерфорда стало известно, что из радия образуются другие короткоживущие радиоактивные элементы, так что только a-активность радия должна примерно через три недели увеличиться вчетверо. Но при одном условии: препарат должен находиться в закрытом сосуде, так как первый продукт превращения радия – газообразный радон.

Определение атомной массы даже самого активного препарата давало значение, мало отличающееся от атомной массы бария (137). Это означало, что концентрация радия в урановой смолке очень мала. Значит, для выделения нового элемента нужно будет переработать очень много дорогого минерала, которого у них в нужном количестве не было, и сколько его потребуется, не знал никто. В статье от 26 декабря было примечание, в котором говорилось, что «профессор Венского университета мосье Зюсс любезно согласился уговорить австрийское правительство выслать в Париж 100 кг отходов от переработки урановой смолки на шахтах Иоахимсталя».

Как выяснилось, и 100 кг было мало. Урановую смолку добывали в Богемии (латинизированное название Чехии), вблизи знаменитых шахт Иоахимсталя (ныне – город в Чехии Яхимов). Урановую руду сплавляли с содой при доступе воздуха. Плав обрабатывали сначала водой – уран при этом переходил в раствор в виде карбонатного комплекса, затем разбавленной серной кислотой – получался сульфатный комплекс урана. Соединения урана использовали для производства дорогого богемского уранового стекла и глазури по фарфору. Остаток руды после извлечения урана, который содержал весь радий, выбрасывали, и постепенно скопились целые горы отходов, которые сваливали в ближайшем сосновом лесу. Супруги Кюри в конечном счете получили не 100 кг, а более 10 тонн.

Сейчас на стене Парижской Высшей школы физики и химии укреплена памятная доска с надписью: «В 1898 году в лаборатории этой Школы Пьер и Мария Кюри, при помощи Густава Бемона, открыли радий».

Выделение радия.

Работа предстояла огромная – химическая переработка (вручную) многих тонн материала; она заняла четыре года. Вначале остатки кипятили с большим избытком концентрированного раствора соды – при этом содержащиеся в них не растворимые ни в воде, ни в кислотах сульфаты бария и радия (и частично кальция) переходили в карбонаты: Ba(Ra)SO4 + Na2CO3 ® Ba(Ra)CO3 + Na2SO4. Раствор Na2SO4 сливали, а осадок карбонатов бария и радия уже легко растворялся в разбавленной соляной кислоте: Ba(Ra)CO3 + 2HCl ® Ba(Ra)Cl2 + CO2 + h3O. Раствор отфильтровывали от примесей и добавлением серной кислоты из него снова выделяли сульфаты кальция, бария и радия – их получалось от 10 до 20 кг из тонны исходного вещества. Затем весь цикл повторяли, пока не получались чистые соли бария и радия (примерно 8 кг из тонны), отделенные от более растворимого кальция. Использовали и другие химические приемы, необходимые для отделения радия от следов других радиоактивных элементов. Так, свинец, висмут и сопровождающий его полоний осаждали сероводородом в виде нерастворимых сульфидов. Актиний осаждался вместе с железом, алюминием и редкоземельными элементами с помощью раствора аммиака. Затем методом дробной кристаллизации выделяли все более чистую соль радия. По мере увеличения доли радия выпадающие вначале бесцветные кристаллы со временем под действием собственного излучения желтели, затем становились оранжевыми или розовыми, а после растворения снова дали бесцветный раствор.

Сама Кюри много лет спустя призналась, что не уверена, проявила ли бы она такую настойчивость, если бы знала, как мало радия содержится в руде и какая титаническая работа предстоит для получения хотя бы мизерного его количества. Для работы директор Школы выделил им старый сарай с застекленной крышей, где раньше была прозекторская. По подсчетам австрийского физика Стефана Мейера (1872–1950) М.Кюри пришлось переработать вручную свыше 11 тонн отходов, неудивительно, что к вечеру она буквально падала от усталости. Тем не менее, впоследствии она признавалась, что именно в этом сарае провела свои лучшие и счастливейшие годы.

Затем появились помощники и работа пошла быстрее.Весной 1902, после переработки тонны урановых отходов, масса радия (в виде RaCl2) достигла 0,1 г. Позднее подсчитали, что тонна урановой смолки теоретически содержит 0,17 г радия в виде хлорида. Таким образом, потери оказались сравнительно невелики, если учесть колоссальный объем работы в неподходящих условиях и исключительно малое содержание радия в руде: 34 миллионные доли процента. Это и позволило В.Маяковскому написать известные строчки:

Поэзия –

та же добыча радия.

В грамм добыча,

в год труды.

Изводишь,

единого слова ради,

Тысячи тонн

словесной руды.

Чистота препарата была подтверждена Демарсе с помощью спектрального анализа. Полученного вещества было достаточно, чтобы определить атомную массу радия традиционным методом: точную навеску RaCl2 растворяли, осаждали нитратом серебра нерастворимый AgCl, который высушивали и взвешивали. Получилось 225 – именно это значение стояло на месте предполагаемого, еще не открытого элемента в таблице, помещенной Менделеевым в первом издании своего учебника Основы химии.

После переработки восьми тонн у М.Кюри был уже целый грамм радия. Активность нового элемента оказалась в миллион (!) раз выше, чем у урана. Под действием его излучения светились алмазы, а бумага и хлопчатобумажная ткань разрушались, на коже появлялись ожоги, а потом язвы. Необычные свойства нового элемента требовали все больших его количеств. К концу 1903 Кюри имели уже 10 тонн отходов из 20, зарезервированных для них при содействии Венской академии наук. Возросли и расходы на доставку – их оплатил банкир Эдмонд Ротшильд. Исходного сырья стало так много, что обработать его в сарае было уже невозможно. Пьер Кюри организовал первоначальную обработку отходов на химическом заводе в Ножан-на-Марне – небольшом городке к востоку от Парижа. На нем использовали несколько упрощенную методику Марии Кюри, а дробную кристаллизацию осуществляли не с хлоридами, а с бромидами бария и радия (для них коэффициент разделения оказался выше). Промышленную добычу радия консультировали супруги Кюри и их друг и коллега французский физикохимик Андре Луи Дебьерн (1874–1949), который в 1899 открыл в урановой смолке еще один радиоактивный элемент – актиний. Финансовую помощь пришла из нескольких источников (среди них были и анонимные). Французская академия наук предоставила грант в 20 000 франков (около 4000 долл.). Когда в других странах также начались работы по добыче радия, супруги Кюри могли заработать намного больше, чем получили за Нобелевскую премию. Однако они отказались взять патент на свое открытие, хотя цена радия уже достигла 750 тыс. франков за грамм. Кюри безвозмездно снабжала своим радием всех ученых, которые хотели изучать это замечательное вещество. Супруги Кюри убедили Беккереля вернуться к исследованию радиоактивности нового элемента. Он доказал, что сильно отклоняемые магнитным полем b-лучи идентичны «катодным лучам», т.е. представляют собой быстро летящие электроны.

По мере увеличения количества добытого радия стало возможным более подробно исследовать его свойства, а также свойства его соединений. Оказалось, что под влиянием собственного излучения как сами бесцветные соединения радия, так и стеклянные сосуды, в которых они хранятся, со временем темнеют. Все соединения радия в темноте испускают голубоватое свечение (светятся возбужденные атомы азота).

Пьер и Мария Кюри обнаружили потемнение стекла под влиянием излучения радия (сейчас стекла для очков тонируются тоже с помощью радиации). Немецкий физик Ф.О.Гизель обнаружил, что лучи радия окрашивают и природные кристаллы каменной соли (NaCl) и плавикового шпата (CaF2). Он же показал, что RaBr2 окрашивает пламя в карминовый цвет (как стронций), а в спектре радия есть линии в красной, сине-зеленой и фиолетовой областях спектра.

В 1904 Пьер Кюри в Королевском институте в Лондоне продемонстрировал, как писали английские ученые, «поразительный эксперимент». Ему помогал английский физик и химик Джеймс Дьюар (1842–1923), который в 1898 впервые получил большое количество жидкого водорода и изобрел «сосуды Дьюара» для хранения сжиженных газов (в быту их называют «термосами»). Эксперимент показывал, что излучение радия и выделяемая им теплота не меняются при охлаждении до температуры жидкого воздуха (около –190° С) и даже жидкого водорода (–252,8° С). Измерения показали, что сам радий (за счет a-излучения) выделяет в час более 105 Дж/г, а радий вместе с продуктами его распада – почти 590 Дж/ч, причем на долю a-частиц приходится около 89%, на долю b-частиц – 4,5%, остальное дает g-излучение.

В 1910 М.Кюри и Дебьерн впервые получили металлический радий. Они использовали метод, примененный ранее для выделения бария. Для этого водный раствор RaCl2 был подвергнут электролизу с ртутным катодом и платино-иридиевым анодом. Образовавшуюся на катоде амальгаму радия нагревали в потоке водорода, постепенно повышая температуру до 700° С (почти до плавления радия), чтобы отогнать ртуть (она кипит при 357° С).

На Международном конгрессе по радиоактивности и электричеству, собравшемся в Брюсселе в 1910, М.Кюри была поручена подготовка международного эталона радия; он был нужен в качестве стандарта радиоактивности. Несмотря на заметное ухудшение здоровья (помимо переутомления, начала сказываться лучевая болезнь, о которой в то время ничего не знали и потому не предпринимали никаких мер безопасности), Мария приготовила эталон в течение одного месяца. В последующие годы на основании этого эталона были изготовлены многочисленные вторичные эталоны, которые были переданы в Австрию, Германию, Англию, Францию, США, Канаду, Швецию, Японию, Португалию, Данию, Бельгию, Чехословакию, Венгрию, СССР, Австралию Конгресс, свидетельству английских физиков, дал название единице радиоактивности «кюри» в честь Марии Кюри. Однако сама Мария писала, что «конгресс пожелал дать этой единице название кюри, чтобы почтить память Пьера Кюри и его труды в области радиоактивности».

В ноябре 1911 года впервые Нобелевская премия была вручена повторно. Как было отмечено в протокольном решении Шведской академии наук, премия по химии присуждалась «Марии Склодовской-Кюри в знак признания ее вклада в развитие химии, который она внесла открытием радия и полония, определением свойств радия и выделением радия в металлической форме, и, наконец, за ее эксперименты с этим элементом».

«Радиевый бум».

Отказ супругов Кюри на извлечение материальных выгод из своего открытия открыл дорогу к получению и применению радия для ученых всех стран. Начали выходить специальные журналы, посвященные радию и радиоактивности. В 1913 осуществилась мечта Пьера Кюри – в Париже был организован Институт радия. Руководителем одной из двух его лабораторий была Мария Кюри. В том же году был основан Национальный институт радия в США. Еще раньше, в 1910, Институт радия открылся в Вене, его директором был назначен Стефан Мейер. В 1913 лаборатория по радиоактивности открылась в Варшаве. В 1932 при активной помощи сестры Марии Брониславы был создан варшавский Институт радия (ныне – Онкологический институт имени Марии Склодовской-Кюри). В 1922 Радиевый институт был основан в Петрограде; его директором стал В.И.Вернадский (1863–1945). За год до этого в нашей стране первые препараты радия из отечественной ферганской руды получили радиохимик Виталий Григорьевич Хлопин (в будущем – академик и директор Института) и физикохимик и металлург Иван Яковлевич Башилов (1892–1953), предложивший технологию извлечения радия, урана и ванадия (эти элементы содержатся в минерале карнотите).

Когда выяснилась возможность использования радия в медицине, в мире развернулась настоящая «радиевая лихорадка». На всех континентах интенсивно велся поиск и добыча радиоактивных урановых руд, из которых радий добывали в основном по методу М.Кюри.

Цена на радий начала стремительно расти и вскоре значительно превысила стоимость алмазов (в середине 1910-х – почти 180 тыс. долл. за грамм). При тогдашней цене золота (35 долл. за унцию) 1 г радия стоил столько же, сколько 160 кг золота.

Резкое подорожание радия в начале века было связано также с тем, что в конце 1903 австрийское правительство наложило эмбарго на вывоз из Иоахимсталя как самой урановой руды, так и остатков от ее переработки и вскоре само построило там завод по добыче радия. К 1910 на нем получили уже 13 граммов радия, и до 1922 этот завод оставался европейским лидером по производству радия. Огромная цена радия стимулировала поиск его руд и добычу на всех континентах. В 1920–1930-е один за другим открывались новые предприятия по переработке урановых руд и добыче радия – как на своем сырье, так и на привозном. Завод в Ножане, организованный еще Пьером Кюри, работал на разнообразном сырье: урановую смолку ввозили из Венгрии, Швеции, Канады и Колорадо, отенит добывался в самой Франции, а также привозился из Португалии, хальколит – из Богемии, карнотит – из Португалии и Юты (США), а торианит (содержащий уран ThO2) – даже из Цейлона. Добывали торианит и в Японии. В Лондоне перерабатывали руду, добываемую на шахтах юго-западной оконечности Англии (полуостров Корнуолл), часть этой руды перевозили также на переработку во Францию. На заводе близ Стокгольма радий добывали из собственных урансодержащих сланцев и урановой смолки из Норвегии (которая в 1905 стала независимой). В Австралии радий получали из руд, найденных в южных пустынях...

Россия включилась в гонку в 1910, переработку вела частная компания в Фергане, хотя руда оказалась довольно бедной. Во время войны работа прекратилась, но после революции был построен уже государственный завод на Каме, а в 1931 – еще один в Москве. Есть и позорные страницы в отечественной истории радия. Еще в 1930-е малограмотный горнорабочий И.Г.Прохоров начал рассказывать и писать в высокие партийные инстанции о своей мифической встрече в 1914 в Восточной Сибири с Марией Кюри, которая якобы лично подтвердила наличие богатых радиево-урановых месторождений в Минусинском уезде Енисейской губернии. Этот рассказ (вошедший даже в серьезные научные сборники) впоследствии был использован органами госбезопасности СССР для массовых репрессий против советских геологов в 1949 под предлогом сокрытия ими радиево-урановых месторождений.

С 1913 по 1922 основным поставщиком радия на мировой рынок были США. Радий там добывался в штате Колорадо, а его извлечением занималось несколько компаний, лидером была «Стандард Кемикл», которая извлекала радий из карнотитовых руд. Пик добычи пришелся на 1921 – 35 г радия, всего же с 1913 по 1923 США получили 196 г радия. Теперь уже уран выбрасывался как ненужный балласт или продавался за бесценок: основной целью был радий.

Но вскоре радиевая промышленность США пришла в упадок: с 1921 начали разрабатываться месторождения в Бельгийском Конго (провинция Катанга), и в 1922 в Бельгии заработал завод близ Антверпена. Африканская руда оказалась очень богатой: она содержала в среднем 50% оксида урана, и если для получения 1 грамма радия в США надо было переработать 300–400 тонн карнотитовой руды, то заводу в Бельгии для того же требовалось всего 10 тонн. С 1922 по 1933 там было выделено 326 г радия. Пик добычи пришелся на конец 1920-х – 60 г радия в год. Но и бельгийцам пришлось сократить производство ввиду сильной конкуренции со стороны Канады. Руду там добывали с 1932 на побережье Большого Медвежьего озера, добыча радия в 1938 достигла 75 г. Данные за последующие годы были засекречены, так как отражали добычу нового стратегического сырья – урана, известно только, что производство радия в Канаде продолжалось до 1954, а в Бельгии – до 1960. С 1930-х весь рынок радия был под контролем бельгийских и канадских компаний. В небольшом количестве радий производили также в Англии, Франции, СССР. В Чехословакии его добывали (в Яхимове) вплоть до 1937.

Общее количество добытого радия увеличивалось быстрыми темпами. Если к 1916 во всем мире было получено 48 г радия, то через 10 лет его было уже 340 г. Постепенное накопление мировых запасов радия, который практически не расходуется (за 10 лет его количество уменьшается за счет распада менее чем на 0,5%), привело к быстрому снижению цены более чем вдвое к началу 1920-х, а затем еще в несколько раз в последующие десятилетия.

ЦЕНА НА РАДИЙ (в долларах) в разные годы отражала баланс спроса и предложения

Тем не менее, радий оставался очень дорогим элементом. В настоящее время радия накоплено около 3 кг, и больше его практически не добывают. Более того, при переработке урановых руд радий считается вредным побочным продуктом, требующим безопасного захоронения!

Применение радия.

В течение многих десятилетий радий применялся в основном в медицинских целях и лишь в очень малых количествах – для научных исследований. Излучением радия лечили прежде всего злокачественные опухоли, для этого использовали содержащие радий иголки, трубочки или пластинки; их накладывали на больное место или же хирургическим путем вводили на некоторое время прямо в опухоль. Когда цена радия снизилась, в некоторых больницах стали использовать «радиевые пушки» с дистанционным облучением пациентов, они содержали несколько граммов радия. Конечно, не обошлось и без шарлатанов, которые предлагали «чудодейственный радий» от всех недугов – начиная с психических заболеваний и кончая бессонницей. Дошло до продажи «радиевых удобрений», якобы повышающих урожай. В результате некоторые поля в США, Канаде и Франции были «удобрены» радиоактивными веществами.

Широко применялся радий и для получения светящихся составов; с этой целью соли радия смешивали с подходящим люминофором (см. ЛЮМИНЕСЦЕНЦИЯ. СВЕЧЕНИЕ ВЕЩЕСТВ). Такие составы наносили на стрелки часов и компасов, на шкалы военных приборов и даже на предметы быта, не подозревая об опасности. В таких покрытиях обычно использовали сульфид цинка, содержащий от 0,0025 до 0,03% радия. Использовали также способность радия ионизировать воздух и таким образом снимать статический заряд, предотвращая возможность воспламенения горючих паров. В 1930-х в США производились даже ткани из искусственного шелка «с радием», который снимал статическое электричество и предотвращал их слипание. Все это прекратилось, когда стала широко известна опасность радиоактивного облучения и лучевой болезни, более того, после взрыва первых ядерных бомб всеобщее увлечение «радием» и радиацией сменилось прямо противоположной и тоже не всегда обоснованной радиофобией.

Сейчас радий находит лишь ограниченное применение и для этого его накопленных запасов более чем достаточно. В медицине радий иногда используют для кратковременного облучения при лечении злокачественных заболеваний кожи, слизистой оболочки носа, мочеполового тракта. Радий используют и как источник радона для приготовления радоновых ванн. Радий можно использовать и в компактных источниках нейтронов, для этого небольшие его количества помещают в ампулу вместе с бериллием, под действием альфа-излучения (ядер гелия) из бериллия выбиваются нейтроны: 9Be + 4He ® 12C + 1n. Однако сейчас есть множество более дешевых радионуклидов с нужными свойствами, которые получают на ускорителях или ядерных реакторах, например, 60Co (с периодом полураспада t1/2 = 5,3 года), 137Cs (t1/2 = 30,2 года), 182Ta (t1/2 = 115 сут), 192Ir (t1/2 = 74 сут), 198Au (t1/2 = 2,7 сут). В приборах постоянного свечения радий также заменяют теперь тритием (t1/2 = 12,3 года) или 147Pm (t1/2 = 2,6 года).

Радий сильно токсичен; допустимая его концентрация в воздухе исчезающе мала – не более 10 мг/км3 или 10–11 г/м3. При такой концентрации в 1 м3 происходит чуть больше двух распадов атомов радия в секунду. Работа с радием и его препаратами, как и с другими радиоактивными веществами, требует строгого соблюдения защитных мер.

Илья Леенсон

www.krugosvet.ru

Радий: свойства, соединения, применение

РАДИЙ, Ra (от лат. radius — луч *. а. radium; н. Radium; ф. radium; и. radio) — радиоактивный химический элемент II группы периодической системы Менделеева, атомный номер 88, атомная масса 226,0254. Изотопы с массовыми числами 223, 224, 226 и 228 входят в природные радиоактивные ряды; наиболее устойчив 226Ra (Т1/2около 1620 лет). Известны 14 природных и искусственных изотопов радия с массовыми числами 213 и от 218 до 230. Открыт в 1898 П. Кюри, М. Склодовской-Кюри и Ж. Бемоном.

Свойства радия

Радий — серебристо-белый металл, кристаллическая решётка кубическая объёмноцентрированная; плотность 5500 кг/м3; t плавления 969°С; t кипения около 1500°С; теплоёмкость Cp0 29 Дж/(моль•К). Степень окисления +2. По химическим свойствам радий сходен с барием, но активнее его. Реагирует с водой с образованием сильного основания Ra(OH)2. На воздухе легко окисляется с образованием RaO, соединяясь с N, даёт нитрид Ra3N2. Галогениды (кроме фторида), нитрат и сульфид радия растворимы в воде. Ионные растворы бесцветны. Малорастворимы в воде соли; RaSО4, RaCО3, RaC2О4, Ra3(PО4)2, RaCrО4, RaF2, RaBeF4, Ra(YО3)2, RaWО4. Радий образует более прочные, чем другие щёлочноземельные металлы, комплексные соединения с рядом органических кислот (лимонной, молочной и т.п.).

Содержание радия в природе

Среднее содержание в земной коре 1•10-10 (по массе). Как член семейства 238U, 220Ra содержится во всех рудах урана (около 0,3 г/т). В рудах урана содержится также изотоп 223Ra, в рудах тория — 224Ra и 228Ra. В результате вымывания из урановых руд радий находится в растворённом состоянии в воде и входит в состав вторичных минералов Pb5(PО4)3ClBaCО3 и т.д.. Содержание радия в горных породах обычно 2•10-11 — 5•10-12 г/г, в донных осадках 5•10-11 г/г.

Радий выделяют из урановых руд химическим методом. Металлический радий получают электролизом раствора RaCl2 на ртутном катоде. В геологии изотопы радия (228Ra и др.) применяют для определения возраста океанических осадочных пород и минералов. Радий используется в геохимии как индикатор смешения и циркуляции вод океанов (изотопы 226Ra и 228Ra), для определения концентрации урана по равновесной активности радия.

Применение радия

Радий применяется в качестве источника а-частиц для приготовления Ra-Be источников нейтронов, в смеси с ZnS — для приготовления светосоставов, в медицине радий — как источник радона для лечения радоновыми ваннами. Иногда радий используют для дефектоскопии литья, сварных швов, для снятия электростатических зарядов.

www.mining-enc.ru

Радий - это... Что такое Радий?

Внешний вид простого вещества Свойства атома Имя, символ, номер Атомная масса(молярная масса) Электронная конфигурация Химические свойства Радиус иона Электроотрицательность Электродный потенциал Степени окисления Энергия ионизации(первый электрон) Термодинамические свойства простого вещества Плотность (при н. у.) Температура плавления Температура кипения Теплота плавления Теплота испарения Молярная теплоёмкость Молярный объём Кристаллическая решётка простого вещества Структура решётки Параметры решётки Прочие характеристики Теплопроводность
Серебристo-белый металл

Ра́дий / Radium (Ra), 88

226,0254 а. е. м. (г/моль)

[Rn] 7s2

(+2e) 143 пм

0,9 (шкала Полинга)

Ra←Ra2+ −2,916 В

2

1-й 509,3 (5,2785) кДж/моль (эВ)2-й 979,0 (10,147) кДж/моль (эВ)

(при к.т.) 5,5 г/см³

973 K

2010 K

8,5 кДж/моль

113 кДж/моль

29,3[1] Дж/(K·моль)

45,0 см³/моль

кубическая объёмноцентрированая

5,148[2]Å

(300 K) (18,6) Вт/(м·К)

Ра́дий — элемент главной подгруппы второй группы, седьмого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 88. Обозначается символом Ra (лат. Radium). Простое вещество радий (CAS-номер: 7440-14-4) — блестящий щёлочноземельный металл серебристо-белого цвета, быстро тускнеющий на воздухе. Обладает высокой химической активностью. Радиоактивен; наиболее устойчив нуклид 226Ra (период полураспада около 1600 лет).

История

Французские ученые Пьер и Мария Кюри обнаружили, что отходы, остающиеся после выделения урана из урановой руды (урановая смолка, добывавшаяся в городе Иоахимсталь, Чехия), более радиоактивны, чем чистый уран. Из этих отходов супруги Кюри после нескольких лет интенсивной работы выделили два сильно радиоактивных элемента: полоний и радий. Первое сообщение об открытии радия (в виде смеси с барием) Кюри сделали 26 декабря 1898 года во Французской Академии наук. В 1910 Кюри и Андре Дебьерн выделили чистый радий путём электролиза хлорида радия на ртутном катоде и последующей дистилляции в водороде. Выделенный элемент представлял собой, как сейчас известно, изотоп радий-226, продукт распада урана-238. За открытие радия и полония супруги Кюри получили Нобелевскую премию. Радий образуется через многие промежуточные стадии при радиоактивном распаде изотопа урана-238 и поэтому находится в небольших количествах в урановой руде.

В России радий впервые был получен в экспериментах известного советского радиохимика В. Г. Хлопина. В 1918 году на базе Государственного рентгеновского института было организовано Радиевое отделение. Это отделение в 1922 году получило статус отдельного научного института. Одной из задач Радиевого института были исследования радиоактивных элементов, в первую очередь — радия. Директором нового института стал В. И. Вернадский, его заместителем — В. Г. Хлопин, физический отдел института возглавил Л. В. Мысовский.[3]

Многие радионуклиды, возникающие при радиоактивном распаде радия, до того, как была выполнена их химическая идентификация, получили наименования вида радий А, радий B, радий C и т. д. Хотя сейчас известно, что они представляют собой изотопы других химических элементов, их исторически сложившиеся названия по традиции иногда используются:

Названная в честь Кюри внесистемная единица радиоактивности кюри основана на активности 1 г радия-226: 3,7·1010 распадов в секунду, или 37 ГБк.

Происхождение названия

Название «радий» связано с излучением ядер атомов Ra (лат. radius — луч).

Нахождение в природе

Радий довольно редок. За прошедшее с момента его открытия время — более столетия — во всём мире удалось добыть всего только 1,5 кг чистого радия. Одна тонна урановой смолки, из которой супруги Кюри получили радий, содержит лишь около 0,0001 г радия-226. Весь природный радий является радиогенным — возникает при распаде урана-238, урана-235 или тория-232; из четырёх найденных в природе наиболее распространённым и долгоживущим изотопом (период полураспада 1602 года) является радий-226, входящий в радиоактивный ряд урана-238. В равновесии отношение содержания урана-238 и радия-226 в руде равно отношению их периодов полураспада: (4,468·109 лет)/(1602 года)=2,789·106. Таким образом, на каждые три миллиона атомов урана в природе приходится лишь один атом радия или 1,02 мкг/т (кларк в земной коре).

Все природные изотопы радия сведены в таблицу:

Изотоп Историческое название Семейство Период полураспада Тип распада Дочерний изотоп (историческое название)
Радий-223 актиний Х (AcX) ряд урана-235 11,435 дня α радон-219 (актинон, An)
Радий-224 торий Х (ThX) ряд тория-232 3,66 дня α радон-220 (торон, Tn)
Радий-226 радий (Ra) ряд урана-238 1602 года α радон-222 (радон, Rn)
Радий-228 мезоторий I (MsTh2) ряд тория-232 5,75 года β актиний-228 (мезоторий II, MsTh3)

Геохимия радия во многом определяется особенностями миграции и концентрации урана, а также химическими свойствами самого радия — активного щёлочноземельного металла. Среди процессов, способствующих концентрированию радия, следует указать в первую очередь на формирование на небольших глубинах геохимических барьеров, в которых концентрируется радий. Такими барьерами могут быть, например, сульфатные барьеры в зоне окисления. Поднимающиеся снизу хлоридные сероводородные радийсодержащие воды в зоне окисления становятся сульфатными, радий осаждается с BaSO4 и CaSО4, где он становится практически нерастворимым постоянным источником радона. Из-за высокой миграционной способности урана и способности его к концентрированию, формируются многие типы урановых рудообразований в гидротермах, углях, битумах, углистых сланцах, песчаниках, торфяниках, фосфоритах, бурых железняках, глинах с костными остатками рыб (литофациями). При сжигании углей зола и шлаки обогащаются 226Ra. Также содержание радия повышено в фосфатных породах.

В результате распада урана и тория и выщелачивания из вмещающих пород в нефти постоянно образуются радионуклиды радия. В статическом состоянии нефть находится в природных ловушках, обмена радием между нефтью и подпирающими ее водами нет (кроме зоны контакта вода-нефть) и в результате имеется избыток радия в нефти. При разработке месторождения пластовые и закачиваемые воды интенсивно поступают в нефтяные пласты, поверхность раздела вода-нефть резко увеличивается и в результате радий уходит в поток фильтрующихся вод. При повышенном содержании сульфат-ионов растворенные в воде радий и барий осаждаются в виде радиобарита Ва(Ra)SО4, который выпадает на поверхности труб, арматуры, резервуаров. Типичная объёмная активность поступающей на поверхность водонефтяной смеси по 226Rа и 228Rа может быть порядка 10 Бк/л (соответствует жидким радиоактивным отходам).

Основная масса радия находится в рассеянном состоянии в горных породах. Радий — химический аналог щелочных и щёлочноземельных породообразующих элементов, из которых состоят полевые шпаты, составляющие половину массы земной коры. Калиевые полевые шпаты — главные породообразующие минералы кислых магматических пород — гранитов, сиенитов, гранодиоритов и др. Известно, что граниты обладают природной радиоактивностью несколько выше фоновой из-за содержащегося в них урана. Хотя кларк урана не превышает 3 г/т, но в гранитах его содержание составляет уже 25 г/т. Но если гораздо более распространённый химический аналог радия барий входит в состав довольно редких калий-бариевых полевых шпатов (гиалофанов), а «чистый» бариевый полевой шпат, минерал цельзиан BaAl2Si2O8 очень редок, то накопления радия с образованием радиевых полевых шпатов и минералов вообще не происходит из-за короткого периода полураспада радия. Радий распадается на радон, уносящийся по порам и микротрещинкам и вымывающийся с грунтовыми водами. В природе иногда встречаются молодые радиевые минералы, не содержащие уран, например радиобарит и радиокальцит, при кристаллизации которых из растворов, обогащённых радием (в непосредственной близости от легкорастворимых вторичных урановых минералов), радий сокристаллизуется с барием и кальцием благодаря изоморфизму.

Получение

Получить чистый радий в начале ХХ в. стоило огромного труда. Мария Кюри трудилась 12 лет, чтобы получить крупинку чистого радия. Чтобы получить всего 1 г чистого радия, нужно было несколько вагонов урановой руды, 100 вагонов угля, 100 цистерн воды и 5 вагонов разных химических веществ. Поэтому на начало ХХ в. в мире не было более дорогого металла. За 1 г радия нужно было заплатить больше 200 кг золота.

Физические и химические свойства

Радий при нормальных условиях представляет собой блестящий белый металл, на воздухе темнеет (вероятно, вследствие образования нитрида радия). Реагирует с водой. Ведёт себя подобно барию и стронцию, но более химически активен. Обычная степень окисления — +2. Гидроксид радия Ra(OH)2 — сильное, коррозионное основание.

Применение

В настоящее время радий иногда используют в компактных источниках нейтронов, для этого небольшие его количества сплавляются с бериллием. Под действием альфа-излучения (ядер гелия-4) из бериллия выбиваются нейтроны: радона для приготовления радоновых ванн (хотя в настоящее время их полезность оспаривается). Кроме того, радий применяют для кратковременного облучения при лечении злокачественных заболеваний кожи, слизистой оболочки носа, мочеполового тракта.

Однако в настоящее время существует множество более подходящих для этих целей радионуклидов с нужными свойствами, которые получают на ускорителях или в ядерных реакторах, например, 60Co (T1/2 = 5,3 года), 137Cs (T1/2 = 30,2 года),

dik.academic.ru

Радий - это... Что такое Радий?

Внешний вид простого вещества Свойства атома Имя, символ, номер Атомная масса(молярная масса) Электронная конфигурация Химические свойства Радиус иона Электроотрицательность Электродный потенциал Степени окисления Энергия ионизации(первый электрон) Термодинамические свойства простого вещества Плотность (при н. у.) Температура плавления Температура кипения Теплота плавления Теплота испарения Молярная теплоёмкость Молярный объём Кристаллическая решётка простого вещества Структура решётки Параметры решётки Прочие характеристики Теплопроводность
Серебристo-белый металл

Ра́дий / Radium (Ra), 88

226,0254 а. е. м. (г/моль)

[Rn] 7s2

(+2e) 143 пм

0,9 (шкала Полинга)

Ra←Ra2+ −2,916 В

2

1-й 509,3 (5,2785) кДж/моль (эВ)2-й 979,0 (10,147) кДж/моль (эВ)

(при к.т.) 5,5 г/см³

973 K

2010 K

8,5 кДж/моль

113 кДж/моль

29,3[1] Дж/(K·моль)

45,0 см³/моль

кубическая объёмноцентрированая

5,148[2]Å

(300 K) (18,6) Вт/(м·К)

Ра́дий — элемент главной подгруппы второй группы, седьмого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 88. Обозначается символом Ra (лат. Radium). Простое вещество радий (CAS-номер: 7440-14-4) — блестящий щёлочноземельный металл серебристо-белого цвета, быстро тускнеющий на воздухе. Обладает высокой химической активностью. Радиоактивен; наиболее устойчив нуклид 226Ra (период полураспада около 1600 лет).

История

Французские ученые Пьер и Мария Кюри обнаружили, что отходы, остающиеся после выделения урана из урановой руды (урановая смолка, добывавшаяся в городе Иоахимсталь, Чехия), более радиоактивны, чем чистый уран. Из этих отходов супруги Кюри после нескольких лет интенсивной работы выделили два сильно радиоактивных элемента: полоний и радий. Первое сообщение об открытии радия (в виде смеси с барием) Кюри сделали 26 декабря 1898 года во Французской Академии наук. В 1910 Кюри и Андре Дебьерн выделили чистый радий путём электролиза хлорида радия на ртутном катоде и последующей дистилляции в водороде. Выделенный элемент представлял собой, как сейчас известно, изотоп радий-226, продукт распада урана-238. За открытие радия и полония супруги Кюри получили Нобелевскую премию. Радий образуется через многие промежуточные стадии при радиоактивном распаде изотопа урана-238 и поэтому находится в небольших количествах в урановой руде.

В России радий впервые был получен в экспериментах известного советского радиохимика В. Г. Хлопина. В 1918 году на базе Государственного рентгеновского института было организовано Радиевое отделение. Это отделение в 1922 году получило статус отдельного научного института. Одной из задач Радиевого института были исследования радиоактивных элементов, в первую очередь — радия. Директором нового института стал В. И. Вернадский, его заместителем — В. Г. Хлопин, физический отдел института возглавил Л. В. Мысовский.[3]

Многие радионуклиды, возникающие при радиоактивном распаде радия, до того, как была выполнена их химическая идентификация, получили наименования вида радий А, радий B, радий C и т. д. Хотя сейчас известно, что они представляют собой изотопы других химических элементов, их исторически сложившиеся названия по традиции иногда используются:

Названная в честь Кюри внесистемная единица радиоактивности кюри основана на активности 1 г радия-226: 3,7·1010 распадов в секунду, или 37 ГБк.

Происхождение названия

Название «радий» связано с излучением ядер атомов Ra (лат. radius — луч).

Нахождение в природе

Радий довольно редок. За прошедшее с момента его открытия время — более столетия — во всём мире удалось добыть всего только 1,5 кг чистого радия. Одна тонна урановой смолки, из которой супруги Кюри получили радий, содержит лишь около 0,0001 г радия-226. Весь природный радий является радиогенным — возникает при распаде урана-238, урана-235 или тория-232; из четырёх найденных в природе наиболее распространённым и долгоживущим изотопом (период полураспада 1602 года) является радий-226, входящий в радиоактивный ряд урана-238. В равновесии отношение содержания урана-238 и радия-226 в руде равно отношению их периодов полураспада: (4,468·109 лет)/(1602 года)=2,789·106. Таким образом, на каждые три миллиона атомов урана в природе приходится лишь один атом радия или 1,02 мкг/т (кларк в земной коре).

Все природные изотопы радия сведены в таблицу:

Изотоп Историческое название Семейство Период полураспада Тип распада Дочерний изотоп (историческое название)
Радий-223 актиний Х (AcX) ряд урана-235 11,435 дня α радон-219 (актинон, An)
Радий-224 торий Х (ThX) ряд тория-232 3,66 дня α радон-220 (торон, Tn)
Радий-226 радий (Ra) ряд урана-238 1602 года α радон-222 (радон, Rn)
Радий-228 мезоторий I (MsTh2) ряд тория-232 5,75 года β актиний-228 (мезоторий II, MsTh3)

Геохимия радия во многом определяется особенностями миграции и концентрации урана, а также химическими свойствами самого радия — активного щёлочноземельного металла. Среди процессов, способствующих концентрированию радия, следует указать в первую очередь на формирование на небольших глубинах геохимических барьеров, в которых концентрируется радий. Такими барьерами могут быть, например, сульфатные барьеры в зоне окисления. Поднимающиеся снизу хлоридные сероводородные радийсодержащие воды в зоне окисления становятся сульфатными, радий осаждается с BaSO4 и CaSО4, где он становится практически нерастворимым постоянным источником радона. Из-за высокой миграционной способности урана и способности его к концентрированию, формируются многие типы урановых рудообразований в гидротермах, углях, битумах, углистых сланцах, песчаниках, торфяниках, фосфоритах, бурых железняках, глинах с костными остатками рыб (литофациями). При сжигании углей зола и шлаки обогащаются 226Ra. Также содержание радия повышено в фосфатных породах.

В результате распада урана и тория и выщелачивания из вмещающих пород в нефти постоянно образуются радионуклиды радия. В статическом состоянии нефть находится в природных ловушках, обмена радием между нефтью и подпирающими ее водами нет (кроме зоны контакта вода-нефть) и в результате имеется избыток радия в нефти. При разработке месторождения пластовые и закачиваемые воды интенсивно поступают в нефтяные пласты, поверхность раздела вода-нефть резко увеличивается и в результате радий уходит в поток фильтрующихся вод. При повышенном содержании сульфат-ионов растворенные в воде радий и барий осаждаются в виде радиобарита Ва(Ra)SО4, который выпадает на поверхности труб, арматуры, резервуаров. Типичная объёмная активность поступающей на поверхность водонефтяной смеси по 226Rа и 228Rа может быть порядка 10 Бк/л (соответствует жидким радиоактивным отходам).

Основная масса радия находится в рассеянном состоянии в горных породах. Радий — химический аналог щелочных и щёлочноземельных породообразующих элементов, из которых состоят полевые шпаты, составляющие половину массы земной коры. Калиевые полевые шпаты — главные породообразующие минералы кислых магматических пород — гранитов, сиенитов, гранодиоритов и др. Известно, что граниты обладают природной радиоактивностью несколько выше фоновой из-за содержащегося в них урана. Хотя кларк урана не превышает 3 г/т, но в гранитах его содержание составляет уже 25 г/т. Но если гораздо более распространённый химический аналог радия барий входит в состав довольно редких калий-бариевых полевых шпатов (гиалофанов), а «чистый» бариевый полевой шпат, минерал цельзиан BaAl2Si2O8 очень редок, то накопления радия с образованием радиевых полевых шпатов и минералов вообще не происходит из-за короткого периода полураспада радия. Радий распадается на радон, уносящийся по порам и микротрещинкам и вымывающийся с грунтовыми водами. В природе иногда встречаются молодые радиевые минералы, не содержащие уран, например радиобарит и радиокальцит, при кристаллизации которых из растворов, обогащённых радием (в непосредственной близости от легкорастворимых вторичных урановых минералов), радий сокристаллизуется с барием и кальцием благодаря изоморфизму.

Получение

Получить чистый радий в начале ХХ в. стоило огромного труда. Мария Кюри трудилась 12 лет, чтобы получить крупинку чистого радия. Чтобы получить всего 1 г чистого радия, нужно было несколько вагонов урановой руды, 100 вагонов угля, 100 цистерн воды и 5 вагонов разных химических веществ. Поэтому на начало ХХ в. в мире не было более дорогого металла. За 1 г радия нужно было заплатить больше 200 кг золота.

Физические и химические свойства

Радий при нормальных условиях представляет собой блестящий белый металл, на воздухе темнеет (вероятно, вследствие образования нитрида радия). Реагирует с водой. Ведёт себя подобно барию и стронцию, но более химически активен. Обычная степень окисления — +2. Гидроксид радия Ra(OH)2 — сильное, коррозионное основание.

Применение

В настоящее время радий иногда используют в компактных источниках нейтронов, для этого небольшие его количества сплавляются с бериллием. Под действием альфа-излучения (ядер гелия-4) из бериллия выбиваются нейтроны: радона для приготовления радоновых ванн (хотя в настоящее время их полезность оспаривается). Кроме того, радий применяют для кратковременного облучения при лечении злокачественных заболеваний кожи, слизистой оболочки носа, мочеполового тракта.

Однако в настоящее время существует множество более подходящих для этих целей радионуклидов с нужными свойствами, которые получают на ускорителях или в ядерных реакторах, например, 60Co (T1/2 = 5,3 года), 137Cs (T1/2 = 30,2 года),

biograf.academic.ru

Радий

РадийСвойства атомаХимические свойстваТермодинамические свойства простого веществаКристаллическая решётка простого вещества
Атомный номер88
Внешний вид простого веществаФлюоресцирующий в зеленой области спектра металл
Атомная масса(молярная масса)226,0254 а. е. м. (г/моль)
Радиус атомаn/a пм
Энергия ионизации(первый электрон)1-й 509,3 кДж/моль2й 979,0 кДж/моль (эВ)
Электронная конфигурация[Rn] 7s2
Ковалентный радиусn/a пм
Радиус иона(+2e) 143 пм
Электроотрицательность(по Полингу)0,9
Электродный потенциалRa←Ra2+ −2,916В
Степени окисления2
Плотность(при к.т.) 5,5 г/см³
Молярная теплоёмкость29,3[1]Дж/(K·моль)
Теплопроводность(18,6) Вт/(м·K)
Температура плавления973 K
Теплота плавления8,5 кДж/моль
Температура кипения2010 K
Теплота испарения113 кДж/моль
Молярный объём45,0 см³/моль
Структура решёткикубическая объёмноцентрированая
Параметры решёткиn/a Å
Отношение c/an/a
Температура Дебаяn/a K

Радий — элемент главной подгруппы второй группы, седьмого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 88. Обозначается символом Ra (Radium). Простое вещество радий (CAS-номер: 7440-14-4) — блестящий щёлочноземельный металл серебристо-белого цвета, быстро тускнеющий на воздухе. Обладает высокой химической активностью. Радиоактивен; наиболее устойчивый изотоп 226Ra (период полураспада около 1600 лет).

История

Французские ученые Пьер и Мария Кюри обнаружили, что отходы, остающиеся после выделения урана из урановой руды (урановая смолка, добывавшаяся в городе Иоахимсталь, Чехия), более радиоактивны, чем чистый уран. Из этих отходов супруги Кюри после нескольких лет интенсивной работы выделили два сильно радиоактивных элемента: полоний и радий. Первое сообщение об открытии радия (в виде смеси с барием) Кюри сделали 26 декабря 1898 года во Французской Академии наук. В 1902 Кюри и Андре Дебьерн выделили чистый радий путём электролиза хлорида радия на ртутном катоде и последующей дистилляции в водороде. Выделенный элемент представлял собой, как сейчас известно, изотоп радий-226, продукт распада урана-238. За открытие радия и полония супруги Кюри получили Нобелевскую премию. Радий образуется через многие промежуточные стадии при радиоактивном распаде изотопа урана-238 и поэтому находится в небольших количествах в урановой руде.

Многие радионуклиды, возникающие при радиоактивном распаде радия, до того, как была выполнена их химическая идентификация, получили наименования вида радий А, радий B, радий C и т. д. Хотя сейчас известно, что они представляют собой изотопы других химических элементов, их исторически сложившиеся названия по традиции иногда используются:

 Изотоп
Эманация радия222Rn
Радий A218Po
Радий B214Pb
Радий C214Bi
Радий C1214Po
Радий C2210Tl
Радий D210Pb
Радий E210Bi
Радий F210Po

Названная в честь Кюри внесистемная единица радиоактивности кюри основана на активности 1 г радия-226: 3,7×1010 распадов в секунду, или 37 ГБк.

Происхождение названия

Название «радий» связано с излучением ядер атомов Ra (radius — луч).

Нахождение в природе

Радий довольно редок. За прошедшее с момента его открытия время — более столетия — во всём мире удалось добыть всего только 1,5 кг чистого радия. Одна тонна урановой смолки, из которой супруги Кюри получили радий, содержит лишь около 0,0001 г радия-226. Весь природный радий возникает при распаде урана-238, урана-235 или тория-232; наиболее распространённым и долгоживущим изотопом (период полураспада 1602 года) является радий-226, входящий в радиоактивный ряд урана-238. В равновесии отношение содержания урана-238 и радия-226 в руде равно отношению их периодов полураспада: (4,468×109 лет)/(1602 года)=2,789×106. Таким образом, на каждые три миллиона атомов урана в природе приходится лишь один атом радия.

 

Получение

Получить чистый радий в начале ХХ в. стоило огромного труда. Мария Кюри трудилась 12 лет, чтобы получить крупинку чистого радия. Чтобы получить всего 1 г чистого радия, нужно было несколько вагонов урановой руды, 100 вагонов угля, 100 цистерн воды и 5 вагонов разных химических веществ. Поэтому на начало ХХ в. в мире не было более дорогого металла. За 1 г радия нужно было заплатить больше 200 кг золота.

Физические и химические свойства

Радий при нормальных условиях представляет собой блестящий белый металл, на воздухе темнеет (вероятно, вследствие образования нитрида радия). Реагирует с водой. Ведёт себя подобно барию и стронцию, но более химически активен. Обычная степень окисления — 2.

Применение

В настоящее время радий иногда используют в компактных источниках нейтронов, для этого небольшие его количества сплавляются с бериллием. Под действием альфа-излучения (ядер гелия-4) из бериллия выбиваются нейтроны: 9Be + 4He → 12C + 1n.

В медицине радий используют как источник радона для приготовления радоновых ванн (хотя в настоящее время их полезность оспаривается). Кроме того, радий применяют для кратковременного облучения при лечении злокачественных заболеваний кожи, слизистой оболочки носа, мочеполового тракта.

Однако в настоящее время существует множество более подходящих для этих целей радионуклидов с нужными свойствами, которые получают на ускорителях или в ядерных реакторах, например, 60Co (T1/2 = 5,3 года), 137Cs (T1/2 = 30,2 года), 182Ta (T1/2 = 115 сут.), 192Ir (T1/2 = 74 сут.), 198Au (T1/2 = 2,7 сут.) и т. д.

Ранее радий часто использовался для приготовления светящихся красок постоянного свечения (для разметки циферблатов часов и других приборов), однако сейчас его обычно заменяют менее опасными изотопами: тритием (T1/2 = 12,3 года) или 147Pm (T1/2 = 2,6 года).

Биологическая роль

Радий чрезвычайно радиотоксичен. В организме он ведёт себя подобно кальцию — около 80 % поступившего в организм радия накапливается в костной ткани. Большие концентрации радия вызывают остеопороз, самопроизвольные переломы костей и злокачественные опухоли костей и кроветворной ткани. Опасность представляет также радон — газообразный радиоактивный продукт распада радия.

Преждевременная смерть Марии Кюри произошла вследствие хронического отравления радием, так как в то время опасность облучения ещё не была осознана.

Изотопы

Известны 25 изотопов радия. Изотопы 223Ra, 224Ra, 226Ra, 228Ra встречаются в природе, являясь членами радиоактивных рядов. Остальные изотопы могут быть получены искусственным путём. Радиоактивные свойства некоторых изотопов радия.

Массовое числоПериод полураспадаТип распада
2132,74(6) мин.α
21910(3) мсα
22017,9(14) мсα (99%)
22128(2) сα
22238,0(5) сα
223 (AcX)11,43(5) дняα
224 (ThX)3,6319(23) дняα
22514,9(2) дняβ
2261602(7) летα
22742,2(5) мин.β
228 (MsTh2)5,75(3) годаβ
23093(2) мин.β

Периодическая система химических элементов Менделеева:

www.himsnab-spb.ru

Радий - это... Что такое Радий?

Внешний вид простого вещества Свойства атома Имя, символ, номер Атомная масса(молярная масса) Электронная конфигурация Химические свойства Радиус иона Электроотрицательность Электродный потенциал Степени окисления Энергия ионизации(первый электрон) Термодинамические свойства простого вещества Плотность (при н. у.) Температура плавления Температура кипения Теплота плавления Теплота испарения Молярная теплоёмкость Молярный объём Кристаллическая решётка простого вещества Структура решётки Параметры решётки Прочие характеристики Теплопроводность
Серебристo-белый металл

Ра́дий / Radium (Ra), 88

226,0254 а. е. м. (г/моль)

[Rn] 7s2

(+2e) 143 пм

0,9 (шкала Полинга)

Ra←Ra2+ −2,916 В

2

1-й 509,3 (5,2785) кДж/моль (эВ)2-й 979,0 (10,147) кДж/моль (эВ)

(при к.т.) 5,5 г/см³

973 K

2010 K

8,5 кДж/моль

113 кДж/моль

29,3[1] Дж/(K·моль)

45,0 см³/моль

кубическая объёмноцентрированая

5,148[2]Å

(300 K) (18,6) Вт/(м·К)

Ра́дий — элемент главной подгруппы второй группы, седьмого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 88. Обозначается символом Ra (лат. Radium). Простое вещество радий (CAS-номер: 7440-14-4) — блестящий щёлочноземельный металл серебристо-белого цвета, быстро тускнеющий на воздухе. Обладает высокой химической активностью. Радиоактивен; наиболее устойчив нуклид 226Ra (период полураспада около 1600 лет).

История

Французские ученые Пьер и Мария Кюри обнаружили, что отходы, остающиеся после выделения урана из урановой руды (урановая смолка, добывавшаяся в городе Иоахимсталь, Чехия), более радиоактивны, чем чистый уран. Из этих отходов супруги Кюри после нескольких лет интенсивной работы выделили два сильно радиоактивных элемента: полоний и радий. Первое сообщение об открытии радия (в виде смеси с барием) Кюри сделали 26 декабря 1898 года во Французской Академии наук. В 1910 Кюри и Андре Дебьерн выделили чистый радий путём электролиза хлорида радия на ртутном катоде и последующей дистилляции в водороде. Выделенный элемент представлял собой, как сейчас известно, изотоп радий-226, продукт распада урана-238. За открытие радия и полония супруги Кюри получили Нобелевскую премию. Радий образуется через многие промежуточные стадии при радиоактивном распаде изотопа урана-238 и поэтому находится в небольших количествах в урановой руде.

В России радий впервые был получен в экспериментах известного советского радиохимика В. Г. Хлопина. В 1918 году на базе Государственного рентгеновского института было организовано Радиевое отделение. Это отделение в 1922 году получило статус отдельного научного института. Одной из задач Радиевого института были исследования радиоактивных элементов, в первую очередь — радия. Директором нового института стал В. И. Вернадский, его заместителем — В. Г. Хлопин, физический отдел института возглавил Л. В. Мысовский.[3]

Многие радионуклиды, возникающие при радиоактивном распаде радия, до того, как была выполнена их химическая идентификация, получили наименования вида радий А, радий B, радий C и т. д. Хотя сейчас известно, что они представляют собой изотопы других химических элементов, их исторически сложившиеся названия по традиции иногда используются:

Названная в честь Кюри внесистемная единица радиоактивности кюри основана на активности 1 г радия-226: 3,7·1010 распадов в секунду, или 37 ГБк.

Происхождение названия

Название «радий» связано с излучением ядер атомов Ra (лат. radius — луч).

Нахождение в природе

Радий довольно редок. За прошедшее с момента его открытия время — более столетия — во всём мире удалось добыть всего только 1,5 кг чистого радия. Одна тонна урановой смолки, из которой супруги Кюри получили радий, содержит лишь около 0,0001 г радия-226. Весь природный радий является радиогенным — возникает при распаде урана-238, урана-235 или тория-232; из четырёх найденных в природе наиболее распространённым и долгоживущим изотопом (период полураспада 1602 года) является радий-226, входящий в радиоактивный ряд урана-238. В равновесии отношение содержания урана-238 и радия-226 в руде равно отношению их периодов полураспада: (4,468·109 лет)/(1602 года)=2,789·106. Таким образом, на каждые три миллиона атомов урана в природе приходится лишь один атом радия или 1,02 мкг/т (кларк в земной коре).

Все природные изотопы радия сведены в таблицу:

Изотоп Историческое название Семейство Период полураспада Тип распада Дочерний изотоп (историческое название)
Радий-223 актиний Х (AcX) ряд урана-235 11,435 дня α радон-219 (актинон, An)
Радий-224 торий Х (ThX) ряд тория-232 3,66 дня α радон-220 (торон, Tn)
Радий-226 радий (Ra) ряд урана-238 1602 года α радон-222 (радон, Rn)
Радий-228 мезоторий I (MsTh2) ряд тория-232 5,75 года β актиний-228 (мезоторий II, MsTh3)

Геохимия радия во многом определяется особенностями миграции и концентрации урана, а также химическими свойствами самого радия — активного щёлочноземельного металла. Среди процессов, способствующих концентрированию радия, следует указать в первую очередь на формирование на небольших глубинах геохимических барьеров, в которых концентрируется радий. Такими барьерами могут быть, например, сульфатные барьеры в зоне окисления. Поднимающиеся снизу хлоридные сероводородные радийсодержащие воды в зоне окисления становятся сульфатными, радий осаждается с BaSO4 и CaSО4, где он становится практически нерастворимым постоянным источником радона. Из-за высокой миграционной способности урана и способности его к концентрированию, формируются многие типы урановых рудообразований в гидротермах, углях, битумах, углистых сланцах, песчаниках, торфяниках, фосфоритах, бурых железняках, глинах с костными остатками рыб (литофациями). При сжигании углей зола и шлаки обогащаются 226Ra. Также содержание радия повышено в фосфатных породах.

В результате распада урана и тория и выщелачивания из вмещающих пород в нефти постоянно образуются радионуклиды радия. В статическом состоянии нефть находится в природных ловушках, обмена радием между нефтью и подпирающими ее водами нет (кроме зоны контакта вода-нефть) и в результате имеется избыток радия в нефти. При разработке месторождения пластовые и закачиваемые воды интенсивно поступают в нефтяные пласты, поверхность раздела вода-нефть резко увеличивается и в результате радий уходит в поток фильтрующихся вод. При повышенном содержании сульфат-ионов растворенные в воде радий и барий осаждаются в виде радиобарита Ва(Ra)SО4, который выпадает на поверхности труб, арматуры, резервуаров. Типичная объёмная активность поступающей на поверхность водонефтяной смеси по 226Rа и 228Rа может быть порядка 10 Бк/л (соответствует жидким радиоактивным отходам).

Основная масса радия находится в рассеянном состоянии в горных породах. Радий — химический аналог щелочных и щёлочноземельных породообразующих элементов, из которых состоят полевые шпаты, составляющие половину массы земной коры. Калиевые полевые шпаты — главные породообразующие минералы кислых магматических пород — гранитов, сиенитов, гранодиоритов и др. Известно, что граниты обладают природной радиоактивностью несколько выше фоновой из-за содержащегося в них урана. Хотя кларк урана не превышает 3 г/т, но в гранитах его содержание составляет уже 25 г/т. Но если гораздо более распространённый химический аналог радия барий входит в состав довольно редких калий-бариевых полевых шпатов (гиалофанов), а «чистый» бариевый полевой шпат, минерал цельзиан BaAl2Si2O8 очень редок, то накопления радия с образованием радиевых полевых шпатов и минералов вообще не происходит из-за короткого периода полураспада радия. Радий распадается на радон, уносящийся по порам и микротрещинкам и вымывающийся с грунтовыми водами. В природе иногда встречаются молодые радиевые минералы, не содержащие уран, например радиобарит и радиокальцит, при кристаллизации которых из растворов, обогащённых радием (в непосредственной близости от легкорастворимых вторичных урановых минералов), радий сокристаллизуется с барием и кальцием благодаря изоморфизму.

Получение

Получить чистый радий в начале ХХ в. стоило огромного труда. Мария Кюри трудилась 12 лет, чтобы получить крупинку чистого радия. Чтобы получить всего 1 г чистого радия, нужно было несколько вагонов урановой руды, 100 вагонов угля, 100 цистерн воды и 5 вагонов разных химических веществ. Поэтому на начало ХХ в. в мире не было более дорогого металла. За 1 г радия нужно было заплатить больше 200 кг золота.

Физические и химические свойства

Радий при нормальных условиях представляет собой блестящий белый металл, на воздухе темнеет (вероятно, вследствие образования нитрида радия). Реагирует с водой. Ведёт себя подобно барию и стронцию, но более химически активен. Обычная степень окисления — +2. Гидроксид радия Ra(OH)2 — сильное, коррозионное основание.

Применение

В настоящее время радий иногда используют в компактных источниках нейтронов, для этого небольшие его количества сплавляются с бериллием. Под действием альфа-излучения (ядер гелия-4) из бериллия выбиваются нейтроны: радона для приготовления радоновых ванн (хотя в настоящее время их полезность оспаривается). Кроме того, радий применяют для кратковременного облучения при лечении злокачественных заболеваний кожи, слизистой оболочки носа, мочеполового тракта.

Однако в настоящее время существует множество более подходящих для этих целей радионуклидов с нужными свойствами, которые получают на ускорителях или в ядерных реакторах, например, 60Co (T1/2 = 5,3 года), 137Cs (T1/2 = 30,2 года),

dic.academic.ru