Твердость драгоценных камней по шкале мооса


Шкала Мооса по твердости | Камень

Твердость камней определяется твердость по Моосу на царапанье и твёрдость по Розивалю. В наше время определяют твердость камней по шкале Мооса только коллекционеры и любители. Раньше когда оптика ещё не была сильно развита методом определения твёрдости на царапанье определяли подлинность драгоценных камней. Сейчас научились искусственно выращивать камни и поэтому метод Мооса определяет не очень точно. Придумал этот способ определение твёрдости Венский минералог Фридрих Моос. У этого метода есть недостаток можно повредить камень но зато есть и плюсы он не требует наличия дорогого оборудования и наличия лаборатории.Принцип этого метода заключается в определение сопротивления камня на царапанье его поверхности острым специальным предметом. Камни имеющие твердость по Моосу выше 7 являются твёрдыми камнями, а камни с твёрдостью ниже 7 подвержены стиранию обычной пылью так как пыль содержит мельчайшие зёрна кварца которые имеют твёрдость по Моосу 7. Поэтому камни имеющие твёрдость по Моосу ниже 7 быстро тускнеют, у них быстро стирается полировка и сильно царапаются при контакте с более твёрдыми предметами. Производить твёрдость на царапанье нужно только острым краем образца только по ровным и свежим поверхностям камня, а если определять на ребристых образований или на выветренных с поверхности штуфов то значения твёрдости на царапанье будут получаться заниженными. Некоторые камни на разных гранях и на разных плоскостях могут иметь разную твёрдость царапанья. Например такие отличия имеет алмаз и благодаря этому его можно шлифовать хотя твердость алмаза по шкале Мооса считается самой высокой.Ниже приведена относительная шкала твердости камней по Моосо в которой показано как можно поцарапать камень и какую твёрдость шлифования по Розивалю имеет камень в зависимости от твёрдости царапанья по Моосу.

Шкала Мооса таблица простого определения твёрдости

Определив твёрдость царапанья камня затем можно по специально созданной таблице определить соответствие камня.Относительная таблица Мооса.

КаменьТвёрдость по МоосуКаменьТвёрдость по МоосуКаменьТвёрдость по Моосу
Алмаз10Смарагдит6,5Томсонит5—5,5
Рубин9Везувиан6,5Титанит5—5,5
Сапфир9Силлиманит6—7,5Чпатит5
Александрит8,5Касситерит6—7Аугелит5
Хризоберилл8,5Эпидот6—7Диоптаз5
Цейлонит8Гидденит6—7Гемиморфш5
Родицит8Кунцит6—6,5Смитсонит5
Шпинель8Амазонит6—6,5Страз5
Таафеит8Авантюриновый полевой шпат6—6,5Вардит5
Топаз8Бенитоит6—6,5Кианит4.5 и 7
ИАГ-гранат (гранатит)8Ортоклаз6—6.5Апофиллит4,5—5
Аквамарин7,5—8Эканит6—6,5Шеелит4,5—5
Берилл7,5—8Фабулит6—6.5Цинкит4,5—5
Ганит7,5—8Лабрадор6—6,5Колеманит4,5
Пейнит7,5—8Лунный камень6—6,5Варисцит4,5
Фенакит7,5—8Нефрит 6—6,5Пурпурит4,5
Изумруд7,5—8Петалит6—6,5Баритокальци т4
Альмандин7,5—8Пренит6—6,5Флюорит4—4,5
Андалузит7,5Пирит6—6,5Магнезит4
Эвклаз7,5Рутил6—6,5Родохрозит4
Гамбергит7,5Амблигонит6Доломит3,5—4,5
Уваровит7,5Битовнит6Сидерит3,5—4
Кордиерит7—7,5Санидин6Арагонит3,5—4,5
Данбурит7—7,5Тугтупит6Азурит3,5—4
Гроссуляр7—7,5Гематит5,5—6,5Куприт3,5—4
Пироп7—7,5Опал5,5—6,5Халькопирит3,5—4
Спессартин7—7,5Родонит5,5—6,5Малахит3,5—4
Ставролит7—7,5Тремолит5,5—6,5Сфалерит3,5—4
Турмалин7—7,5Актинолит5,5—6Церуссит3,5
Аметист7Анатаз5,5—6Говлит3,5
Авантюрин7Бериллонит5.5—6Витерит3,5
Горный хрусталь7Элеолит5,5—6Кораллы3—4
Цитрин7Гаюин5,5—6Жемчуг3—4
Дюмортьерит7Периклаз5,5—6Ангидрит3—3,5
Дымчатый кварц (раухтопаз)7Псиломелан5.5—6Барит3
Розовый кварц7 Содалит5,5—6Кальцит3
Тигровый глаз7Бразилианит5,5Курнаковит3
Циркон6,5—7,5Хромит5,5Вульфенит3
Агат6,5—7Энстатит5.5Гагат2,5—4
Аксинит6.5—7Лейцит5.5Крокоит2,5—3
Халцедон6,5—7Молдавит5.5Гарниерит2,5—3,5
Хлоромеланит6,5—7Натролит5,5Гейлюссит2,5
Хризопраз6,5—7Виллемит5.5Прустит2,5
Демантоид6,5—7Скаполит5—6,5Серпентин2,5
Окаменелое дерево6.5—7Канкринит5—6Хризоколла2—2,5
Жадеит6,5—7Диопсид5—6Слоновая кость2—4
Яшма6—7Г иперстен5—6Янтарь2—3
Корнерупин6,5—7Ильменит5—6Морская пенка (сепиолит)2—2,5
Перидот(хризолит )6,5—7Лазурит5—6Алебастр2—2,5
Танзанит6,5—7Лазулит5—6Улексит2
Г аллиант6,5Танталит5—6Вивианит1,5—3
Перистерит6,5Бирюза5—6Стихтит1,5—2,5
Соссюрит6,5Датолит5—5.5Сера1,5—2
Сингалит6,5Обсидиан5—5,5
В этой таблице каждый экземпляр в шкале Мооса имеет свою твёрдость.

kamni2.ru

Шкала Мооса. Определение твёрдости камней.

Юбилей шкалы Мооса

Более двухсот лет геммологи всего мира пользуются шкалой грубого разграничения твердости минералов. Составленная в 1811-м году немецким ученым Фридрихом Моосом (Carl Friedrich Christian Mohs, 1773-1839), она не утратила актуальности до сих пор. Принцип сравнительного определения твердости пород оказался на редкость удобным. Даже далеко не эталонные параметры человеческого ногтя нашли применение в таблице.

Следует признать, что метод выявления устойчивости любого минерала к процарапывынию для установления показателей его твердости и прост, и остроумен. Моос предложил взять десять весьма распространенных пород – от самой мягкой до самой твердой – и расположить их в таблице так, чтобы с нарастанием номера возрастала степень прочности межмолекулярных связей минерала, понимаемая наукой как твердость.

Естественно ожидать, что самый мягкий минерал (тальк) не в состоянии оставить царапину ни на одном из более прочных материалов. Самый твердый – алмаз – прорезает след на любом из камней естественного происхождения.

Диагностируемый минерологом камень может быть испытан процарапыванием любым из эталонных образцов – что позволяет определить относительную и предположить (пусть и весьма приблизительно) абсолютную твердость породы.

К примеру, зеленый прозрачный минерал, царапаемый топазом, и оставляющий след на кварце, вполне может оказаться бериллом. Камень, похожий на изумруд и найденный на Урале, при проверке не способен процарапать горный хрусталь, зато оставляет след на ортоклазе. Значит, это – хризолит.

Несмотря на условность и несовершенство подобной классификации (многие минералы характеризуются твердостью достаточно широкого диапазона), таблица Мооса прижилась как удобное прикладное средство диагностики камня.

Для геммологов подобные характеристики обрабатываемых материалов оказались ключевыми: твердость драгоценного камня – показатель его устойчивости к абразивному износу, определяющий сферу практического использования кристалла.

Список минералов, использованных Моосом для построения таблицы эталонов твердости, остался неизменным, однако к нашему времени дополнился аналогами, помогающими диагностировать испытуемые образцы:

  • Тальк. Тальк наиболее мягкий минерал, абсолютная твердость (определяется инструментальным методов в лабораторных условиях) равна единице. Поддается процарапыванию ногтем (твердость около 2,5 единиц). Сходными параметрами обладает графит.
  • Гипс. Гипс более чем вдвое тверже талька, однако почти так же легко процарапывается ногтем. Слюда, кристаллы поваренной соли, некоторые другие хлориты характеризуются подобным уровнем твердости.
  • Кальцит. Он же известковый шпат, почти втрое превосходит слюду по твердости, и уже не поддается ногтю. Зато его без затруднений царапает стальное лезвие перочинного ножа (твердость около 5,5 единиц), а также медь и ее сплавы. Благородные металлы – червоное золото, чистое серебро, а также слоистый биотит тверды в той же мере, что и кальцит.
  • Флюорит. Или плавиковый шпат, поддается стальному резцу и осколку стекла, но более чем вдвое превосходит твердостью предыдущий эталонный минерал. Сходной твердостью (но меньшей эстетической выразительностью самоцветных камней) характеризуются доломит и сфалерит.
  • Апатит. Апатит, востребованный ювелирной промышленностью самоцвет, процарапывается не всякой сталью. Он в два с лишним раза тверже флюорита. Оконное стекло оставляет малозаметную царапину на поверхности апатита. Строго блестящий гематит и ослепительно синий лазурит столь же тверды, как и апатит.
  • Ортоклаз. Ортоклаз, он же полевой шпат, примерно вдвое более тверд, нежели апатит. Ортоклаз уже сам царапает стекло, и поддается только твердосплавным сталям. Опал и часто врастающий в кристаллы рутил характеризуются твердостью ортоклаза.
  • Кварц. Кварц в полтора раза тверже ортоклаза. Обрабатывать кварц можно корундами и алмазом. Оцвеченная разновидность окиси кремния – гранат – и двуцветный турмалин не менее тверды, чем горный хрусталь (то есть кристаллический кварц).
  • Топаз. Топаз один из весьма твердых самоцветов. Он вдвое тверже кварца, и сходен по твердости со шпинелью и аквамарином.
  • Корунд. Корунд вчетверо более тверд, чем топаз. В одном ряду с корундом стоят карбид вольфрама (в последние годы ювелиры научились делать из этого материала впечатляющие мужские кольца), сапфиры, рубины.
  • Алмаз. Алмаз чемпион твердости среди минералов природного происхождения. Он вчетверо тверже корунда, и даже теоретически приближается к пределу возможной твердости для любых материальных объектов.
Подбирая материалы для натурного варианта шкалы Мооса, следует знать: минералы, добытые в разных месторождениях, могут существенно различаться твердостью. Австралийские алмазы тверже южноафриканских. Сапфиры Шри-Ланки тверже любого рубина, а сапфиры из штата Кашмир – мягче...

Практикующему минерологу полезно иметь в арсенале инструментов набор эталонов Мооса, вмонтированных (для удобства пользования) в металлические трубчатые оправы. Без самого дорого элемента шкалы – алмаза – можно и обойтись, заменив его эльбором, искусственным материалом, по твердости близким к природному алмазу.

Диагностику материалов следует проводить аккуратными короткими движениями эталонных образцов по плоской (и желательно гладкой) поверхности. Нанесенные царапины необходимо рассматривать при оптическом увеличении: невооруженный глаз не всегда в состоянии отличить, какой именно из испытуемых материалов раскрошился, а какой уцелел.

Поскольку основная масса минералов естественного происхождения обладает твердостью в диапазоне от 2-х до 6-ти единиц, проверку полезно начинать с процарапывания исследуемого образца апатитом или стеклом (твердость 5).

Нужно иметь в виду, что различные плоскости кристаллов одного минерала в некоторых случаях могут обладать различными показателями твердости (таков, в частности, кианит) – что само по себе является характерным диагностическим признаком.

Отдельные материалы, структура которых отлична от кристаллической, могут давать ложные результаты исследования. Гематит, находимый в агрегатном состоянии красной охры, может показаться менее твердым, чем есть на самом деле.

Проверка ювелирных вставок, проводимая с целью определения подлинности камня, должна затрагивать участки камня, скрытые от наблюдателя оправой. Оставляя царапину на видимой грани драгоценного камня, можно испортить дорогое изделие!

Справедливости ради нужно отметить, что попытки создать еще более подробную шкалу относительной твердости минералов предпринимались и после Мооса – однако настоящий успех пришелся на долю универсальной шкалы относительной твердости, созданной Карлом Фридрихом Моосом.

Предыдущая статья: Критерии оценки драгоценных камней

Следующая статья: Обзор имитаций бриллиантов

А вы читали другие статьи этого раздела? Что необходимо знать, перед покупкой драгоценных камней

finesell.ru

Мир камня. Справочник для начинающих. Часть 1 - Ярмарка Мастеров

Чтобы знать чуточку больше и о камнях и об их свойствах, с удовольствием представляю, всем интересующимся, следующий материал.

 

Свойства драгоценных камней

Твердость

Применительно к минералам и драгоценным камням под твердостью понимают, во-первых, твердость при царапаньи (или твердость царапанья) и, во-вторых, твердость при шлифовании. Твердость царапанья прежде, когда оптические методы исследования еще не были столь развиты, как сейчас, играла большую роль при определении драгоценных камней. Сегодня проверка твердости путем царапанья проводится, вообще говоря, лишь у менее ценных камней и в основном коллекционерами. Для профессионального испытания точность такого определения твердости слишком низка. Кроме того, очень велика связанная с ним опасность повреждения камня. Правда, основное преимущество метода царапанья состоит в том, что он позволяет простыми средствами определять драгоценные камни в первом приближении. В минералогии этот способ по-прежнему широко применяется.

Метод определения твердости путем царапанья принадлежит венскому минералогу Фридриху Моосу. Моос определил твердость царапанья как сопротивление, оказываемое минералом при царапанье его поверхности острым контрольным предметом. Камни, имеющие твердость по Моосу выше 7, считаются твердыми. О минералах с твердостью от 8 до 10 говорят, что они имеют «твердость драгоценных камней». Однако это не совсем удачное определение, ибо драгоценные камни характеризуются не только высокой твердостью, хотя она и представляет собой весьма ценное для них качество. Драгоценные камни с твердостью ниже 7 по Моосу нестойки против вездесущей пыли, которая всегда содержит мельчайшие зерна кварца (его твердость по Моосу 7), а потому повреждает полировку и ухудшает блеск мягких камней. Такие камни с течением времени тускнеют и требуют при ношении и хранении особой осторожности, дабы уберечь их от контакта с твердыми, то есть царапающими предметами.

При определении твердости царапанья необходимо следить за тем, чтобы последнее производилось только острым краем образца и только на ровных и свежих поверхностях. У ребристых образований, листоватых кристаллов или выветренных с поверхности штуфов значения твердости царапанья получаются заниженными.

Некоторые драгоценные камни имеют на разных гранях, равно как и по разным направлениям, совершенно различную твердость. Например, у кианита на гранях переднего пинакоида твердость по Моосу составляет в продольном направлении (по удлинению кристалла) 4,5, а в поперечном - 6-7. Поэтому кианит называют также дистеном - «оказывающим двоякое сопротивление». Большие различия в твердости существуют также у алмаза. Только благодаря этому вообще возможно шлифовать алмаз - самый твердый из известных материалов (твердость  10). Шлифовальщик драгоценных камней обязательно должен знать различия в их твердости (как при царапанье, так и при шлифовании), ибо в этом состоит одна из важных предпосылок успешной работы мастера.

Шкала твердости царапанья по Моосу - относительная шкала. С ее помощью можно установить лишь, каким минералом царапается другой (испытуемый) минерал. О том, насколько возрастает (в количественном выражении) твердость от ступени к ступени шкалы Мооса, ничего сказать нельзя. А этот рост в действительности резко различается, как видно из приведенной ниже таблицы, где сопоставлены значения твердости по Моосу и значения абсолютной твердости (твердости шлифования в воде по А. Розивалю).

 

Относительная и абсолютная шкала твердости

Твердость царапанья (по Моосу) Эталонный минерал Простейший способ определения твердости Твердость шлифования (по Розивалю)12345678910

Тальк Скоблится ногтем 0,03
Гипс Царапается ногтем 1,25
Кальцит Царапается медной монетой 4,5
Флюорит Легко царапается ножом 5
Апатит Еще царапается ножом 6,5
Ортоклаз Царапается стальным напильником 37
Кварц Царапает оконное стекло 120
Топаз   175
Корунд   1 000
Алмаз   140 000

Твердость самоцветов по шкале Мооса

Алмаз 10
Рубин 9
Сапфир 9
Александрит 8,5
Хризоберилл 8,5
Цейлонит 8
Родицит 8
Шпинель 8
Таафеит 8
Топаз 8
ИАГ-гранат (гранатит) 8
Аквамарин 7,5—8
Берилл 7,5—8
Ганит 7,5—8
Пейнит 7,5—8
Фенакит 7,5—8
Изумруд 7,5—8
Альмандин 7,5—8
Андалузит 7,5
Эвклаз 7,5
Гамбергит 7,5
Уваровит 7,5
Кордиерит 7—7,5
Данбурит 7—7,5
Гроссуляр 7—7,5
Пироп 7—7,5
Спессартин 7—7,5
Ставролит 7—7,5
Турмалин 7—7,5
Аметист 7
Авантюрин 7
Горный хрусталь 7
Цитрин 7
Дюмортьерит 7
Дымчатый кварц (раухтопаз) 7
Розовый кварц 7
Тигровый глаз 7
Циркон 6,5—7,5
Агат 6,5—7
Аксинит 6,5—7
Халцедон 6,5—7
Хлоромеланит . 6,5—7
Хризопраз 6,5—7
Демантоид 6,5—7
Окаменелое дерево 6,5—7
Жадеит 6,5—7
Яшма 6—7
Корнерупин 6,5—7
Перидот (хризолит) 6,5—7
Танзанит 6,5—7
Галлиант 6,5
Перистерит 6,5
Соссюрит 6,5
Сингалит 6,5
Смарагдит 6,5
Везувиан 6,5
Силлиманит 6—7,5
Касситерит 6—7
Эпидот 6—7
Гидденит 6—7
Кунцит 6—7
Амазонит 6—6,5
Авантюриновый полевой шпат 6—6,5
Бенитоит 6—6,5
Эканит 6—6,5
Фабулит 6—6,5
Лабрадор 6—6,5
Лунный камень 6—6,5
Нефрит 6—6,5
Ортоклаз 6—6,5
Петалит 6—6,5
Пренит 6—6,5
Пирит 6—6,5
Рутил 6—6,5
Амблигонит 6
Битовнит 6
Санидин 6
Тугтупит 6
Гематит 5,5—6,5
Опал 5,5—6,5
Родонит 5,5—6,5
Тремолит 5,5—6,5
Актинолит 5,5—6
Анатаз 5,5—6
Бериллонит 5,5—6
Элеолит 5,5—6
Гаюин 5,5—6
Периклаз 5,5—6
Псиломелан 5,5—6
Содалит 5,5—6
Бразилианит 5,5
Хромит 5,5
Энстатит 5,5
Лейцит 5,5
Молдавит 5,5
Натролит 5,5
Виллемит 5,5
Скаполит 5—6,5
Канкринит 5—6
Диопсид 5—6
Гиперстен 5—6
Ильменит 5—6
Лазурит 5—6
Лазулит 5—6
Танталит 5—6
Бирюза 5—6
Датолит 5—5,5
Обсидиан 5—5,5
Томсонит 5—5,5
Титанит 5—5,5
Апатит 5
Аугелит 5
Диоптаз 5
Гемиморфит 5
Смитсонит 5
Страз 5
Вардит 5
Кианит 4,5 и 7
Апофиллит 4,5—5
Шеелит 4,5—5
Цинкит 4,5—5
Колеманит 4,5
Варисцит 4—5
Пурпурит 4,5
Баритокальцит 4
Флюорит 4—4,5
Магнезит 4
Родохрозит 4
Доломит 3,5—4,5
Сидерит 3.5—4
Арагонит 3,5—4,5
Азурит 3,5—4
Куприт 3,5—4
Халькопирит 3,5—4
Малахит 3,5—4
Сфалерит 3,5—4
Церуссит 3,5
Говлит 3,5
Витерит 3,5
Кораллы 3—4
Жемчуг 3—4
Ангидрит 3—3,5
Барит 3
Кальцит 3
Курнаковит 3
Вульфенит 3
Гагат 2,5—4
Крокоит 2,5—3
Гарниерит 2,5—3
Гейлюссит 2,5
Прустит 2,5
Серпентин 2,5
Хризоколла 2—2,5
Слоновая кость 2—4
Янтарь 2—3
Морская пенка (сепиолит) 2—2,5
Алебастр 2—2,5
Улексит 2
Вивианит 1,5—3
Стихтит 1,5—2,5
Сера 1,5—2

 

Спайность и излом

Многие минералы раскалываются или расщепляются по ровным плоским поверхностям. Это свойство минералов называется спайностью и зависит от строения их кристаллической решетки, от сил сцепления между атомами. Различают спайность весьма совершенную (эвклаз), совершенную (топаз) и несовершенную (гранат). У целого ряда драгоценных и поделочных камней (например, у кварца) она вообще отсутствует. Отдельностью называется способность кристалла раскалываться в определенных участках по параллельно ориентированным поверхностям.

Наличие спайности необходимо учитывать при шлифовке и огранке камней, а также при вставке их в оправу. Сильное механическое воздействие может вызвать раскол (трещину) по спайности. Часто для этого бывает достаточно легкого удара или чрезмерного надавливания при определении твердости. Термические напряжения, возникающие в процессе ювелирной газоплазменной пайки, могут приводить к образованию в камне трещин спайности, а это не только снижает ценность камня, но и чревато опасностью того, что он в дальнейшем и вовсе расколется по возникшим трещинам. Огранка фасетами драгоценного камня с весьма совершенной спайностью (например, эвклаза) требует большого искусства.

Прежде спайность использовалась для аккуратного расчленения крупных камней на части или для отделения дефектных участков. Самый большой из когда-либо найденных алмазов ювелирного качества «Куллинан» (3106 кар) был в 1908 г. расколот по спайности на три крупных куска и множество мелких частей. Теперь подобные операции выполняются преимущественно путем распиловки, что позволяет лучше использовать форму камня.

Форму поверхности фрагментов, на которые распадается минерал при ударе, называют изломом. Он бывает раковистым (похожим на отпечаток раковины), неровным, занозистым, волокнистым, ступенчатым, ровным, землистым и пр. Иногда излом может служить диагностическим признаком, позволяющим различать сходные по внешнему облику минералы. Раковистый излом типичен, например, для всех разновидностей кварца и для имитаций драгоценных камней из стекла.

Плотность

Плотностью (прежде ее именовали удельным весом) называется отношение массы вещества к массе того же объема воды. Следовательно, камень, имеющий плотность 2,6, во столько же раз тяжелее равного объема воды.

Плотность драгоценных камней колеблется от 1 до 7. Камни с плотностью ниже 2 кажутся нам легкими (янтарь 1,1), от 2 до 4 - нормальной тяжести (кварц 2,65), и выше 5 - тяжелыми (касситерит 7,0). Наиболее дорогие драгоценные камни, такие, как алмаз, рубин, сапфир, имеют более высокую плотность, чем главные породообразующие минералы, прежде всего кварц и полевой шпат. Благодаря этому в текучих водах они отлагаются раньше кварцевых песков и накапливаются в так называемых россыпных месторождениях.

Определение плотности драгоценных камней может очень помочь коллекционеру при их идентификации.

В геммологии, которая обычно оперирует малыми количествами материала, плотность определяют двумя методами: методом гидростатического взвешивания и методом погружения в тяжелые жидкости. Первый из них хотя и отнимает много времени, но не требует больших затрат. Что же касается второго метода, то он довольно сложен, а подчас и дорог, но зато позволяет быстро провести надежное сравнение по плотности крупных партий незнакомых камней.

Метод гидростатического взвешивания основан на законе Архимеда; путем погружения неизвестного камня в воду определяется его объем, а плотность затем рассчитывается по простой формуле: Плотность камня = Масса камня / Объём камня

Гидростатические весы каждый может смастерить собственными силами. Достаточно приспособить для этого аптекарские рычажные весы. Испытуемый объект взвешивается сначала в воздухе, а затем в воде; разность полученных значений соответствует массе вытесненной воды и тем самым в числовом выражении - объему камня.

Даже любитель, пользуясь этим способом, в силах измерить плотность с точностью до первого, а при некотором навыке - и до второго десятичного знака. Разумеется, необходимо следить за тем, чтобы камни не соприкасались с посторонними веществами; они должны быть без оправы, а при взвешивании на воздухе - непременно сухими. 

 

Пример: Масса в воздухе 5,2 г Масса в воде 3,3 г Разность = объему 1,9 Плотность = Масса / Объём = 5,2 / 1,9 = 2,7

Основная идея метода погружения в тяжелые жидкости опирается на тот известный факт, что твердые тела в жидкости равной плотности пребывают во взвешенном состоянии, не опускаясь на дно, но и не плавая на поверхности. При испытании неизвестный камень помещают в более тяжелую жидкость, на поверхности которой он плавает; затем начинают разбавлять жидкость, постепенно уменьшая ее плотность, пока последняя не сравняется с плотностью камня, (что распознается по его переходу во взвешенное состояние). Остается измерить плотность разбавленной жидкости - и задача решена.

Метод погружения в тяжелые жидкости, конечно, довольно сложен, но он имеет большие преимущества в тех случаях, когда необходимо отсортировать определенные камни из целой партии неизвестных камней или же отличить искусственные камни и имитации от настоящих драгоценных камней.

Плотность самоцветов и поделочных камней

Танталит 5,18—8,20
Касситерит 6,8—7,1
Вульфенит 6,7—7,0
Галлиант 7,05
Церуссит 6,46—6,57
Куприт 5,85—6,15
Фосгенит 6,13
Крокоит 5,9—6,1
Шеелит 5,1—6,1
Джевалит 5,60—5,71
Цинкит 5,66
Прустит 5,57—5,64
Пирит 5,0—5,2
Гематит 4,95—5,16
Фабулит 5,13
Хромит 4,1—4,9
Ильменит 4,72
Циркон 3,90—4,71
ИАГ-гранат 4,6
Барит 4,5
Смитсонит 4,3—4,5
Псиломелан 4,35
Витерит 4,27—4,35
Рутил 4,20—4,30
Халькопирит 4,1—4,3
Спессартин 4,12—4,20
Альмандин 3,95—4,20
Страз 3,15—4,20
Виллемит 3,89—4,18
Пейнит 4,1
Сфалерит 4,08—4,10
Рубин 3,97—4,05
Сапфир 3,99—4,00
Целестин 3,97—4,05
Ганит 3,99—4,00
Анатаз 3,58—3,98
Малахит 3,82—3,95
Азурит 3,75—3,95
Периклаз 3,7—3,9
Плеонаст 3,7—3,9
Сидерит 3,85
Демантоид 3,82—3,85
Ставролит 3,7—3,8
Пироп 3,65—3,80
Уваровит 3,77
Александрит 3,70—3,73
Хризоберилл 3,70—3,72
Родонит 3,40—3,70
Родохрозит 3,30—3,70
Кианит 3,65—3,69
Бенитоит 3,65—3,68
Гроссуляр 3,60—3,68
Баритокальцит 3,66
Шпинель 3,58—3,61
Таафеит 3,6
Топаз 3,53—3,56
Алмаз 3,47—3,55
Титанит 3,52—3,54
Гемиморфит 3,52—3,54
Гиперстен 3,4—3,5
Сингалит 3,47—3,49
Везувиан 3,32—3,42
Дюмортьерит 3,26—3,41
Эпидот 3,4
Родицит 3,4
Пурпурит 3,2—3,4
Перидот (хризолит) 3,27—3,37
Жадеит 3,30—3,36
Танзанит 3,35
Диоптаз 3,28—3,35
Корнерупин 3,28—3,35
Диопсид 3,27—3,31
Аксинит 3,27—3,29
Эканит 3,28
Энстатит 3,26—3,28
Турмалин 3,02—3,26
Силлиманит 3,25
Смарагдит 3,25
Апатит 3,17—3,23
Гидденит 3,16—3,20
Кунцит 3,16—3,20
Лазулит 3,1—3,2
Флюорит 3,18
Андалузит 3,12—3,18
Магнезит 3,00—3,12
Эвклаз 3,1
Тремолит 2,9—3,1
Актинолит 3,03—3,07
Амблигонит 3,01—3,03
Нефрит 2,90—3,02
Данбурит 3
Датолит 2,90—3,00
Бразилианит 2,98—2,99
Ангидрит 2,90—2,99
Фенакит 2,95—2,97
Доломит 2,85—2,95
Арагонит 2,94
Пренит 2,87—2,93
Яшма 2,58—2,91
Лазурит 2,4—2,9
Бериллонит 2,80—2,85
Вардит 2,81
Стеатит (жировик) 2,7—2,8
Бирюза 2,60—2,80
Серпентин 2,4—2,8
Гарниерит 2,3—2,8
Изумруд 2,67—2,78
Жемчуг 2,60—2,78
Берилл 2,65—2,78
Битовнит 2,71—2,74
Скаполит 2,57—2,74
Кальцит 2,71
Аквамарин 2,67—2,71
Тигровый глаз 2,64—2,71
Аугелит 2,7,
Мраморный оникс 2,7
Лабрадорит 2,69—2,7
Кораллы 2,6—2,7
Вивианит 2,6—2,7
Кордиерит 2,58—2,66
Авантюрин 2,65
Горный хрусталь 2,65
Цитрин 2,65
Празиолит 2,65
Дымчатый кварц (раухтопаз) 2,65
Розовый кварц 2,65
Аметист 2,63—2,65
Авантюриновый полевой шпат 2,62—2,65
Агат 2,60—2,65
Моховой агат 2,58—2,62
Элеолит 2,55—2,65
Халцедон 2,58—2,64
Хризопраз 2,58—2,64
Перистерит 2,61—2,63
Лунный камень 2,56—2,62
Ортоклаз 2,56—2,60
Псевдофит 2,5—2,6
Варисцит 2,4—2,6
Обсидиан 2,3—2,6
Говлит 2,53—2,59
Санидин 2,57—2,58
Амазонит 2,56—2,58
Тугтупит 2,36—2,57
Лейцит 2,45—2,50
Канкринит 2,4—2,5
Апофиллит 2,30—2,50
Колеманит 2,42
Гаюин 2,4
Петалит 2,4
Томсонит 2,3—2,4
Хризоколла 2,00—2,40
Молдавит 2,32—2,38
Гамбергит 2,35
Алебастр (гипс) 2,30—2,33
Содалит 2,13—2,29
Натролит 2,20—2,25
Стихтит около 2,2
Опал 1,98—2,20
Сера 2,05—2,08
Морская пенка (сепиолит) 2
Улексит 1,9—2,0
Слоновая кость 1,7—2,0
Гейлюссит 1,99
Курнаковит 1,86
Гагат 1,30—1,35
Янтарь 1,05—1,30
 

 

Меры массы драгоценных камней

Карат - единица массы, бытующая в торговле драгоценными камнями и в ювелирном деле с античных времен. Не исключено, что само слово «карат» происходит от местного названия (kuara) африканского кораллового дерева, семена которого использовались для взвешивания золотого песка, но более вероятно, что оно ведет начало от греческого названия (keration) широко распространенного в Средиземноморье рожкового дерева, плоды которого изначально служили «гирьками» при взвешивании драгоценных камней (масса одной такой гирьки в среднем примерно равна карату). В 1907 г. Международным комитетом мер и весов на конференции в Париже был введен метрический карат, равный 200 мг, или 0,2 г. До того масса карата, принятого в крупнейших центрах мировой торговли драгоценными камнями, несколько различалась. Отсюда расхождения в массе исторических алмазов, встречающиеся в литературе. Сокращенное обозначение карата - кар. Доли карата выражают в виде простых (например, 1/16 кар) или десятичных (с точностью до второго знака после запятой, например 1,25 кар) дробей. При взвешивании самых мелких алмазов используется также единица массы, называемая «пункт» (англ. point) и равная 0,01 кар.

На помещенном здесь рисунке представлены в натуральную величину точные размеры бриллиантов с современной огранкой и соответствующие им значения массы в каратах; из него видно, как соотносятся поперечник бриллианта и его масса. Разумеется, для камней, имеющих другую плотность и другие формы огранки, эти соотношения будут иными. Не следует путать карат как единицу массы драгоценных камней с каратом как мерой чистоты (пробности) золота, употребляемой в ювелирном деле. В этом втором случае карат служит не единицей массы, а мерой качества золотого сплава. Чем больше число каратов, тем выше содержание чистого золота в ювелирном изделии, а масса его может быть при этом какой угодно. Грамм - единица массы, используемая в торговле ювелирными камнями для менее дорогих камней, и особенно для необработанного камнецветного сырья (например, группы кварца).

Гран [от лат. granum - зерно (пшеницы)] - мера массы жемчуга. Соответствует 0,05 г, то есть 0,25 кар. Сейчас гран все более вытесняется каратом. Употребляемая прежде в торговле жемчугом японская мера массы «момма» (=3,75 г= 18,75 кар) теперь в европейской торговле практически не используется.

Цена. В торговле драгоценными камнями обычно указывается цена за 1 карат. Чтобы вычислить полную стоимость камня, надо перемножить цену и его массу в каратах. При продаже камня конечному потребителю обычно называется полная цена. Стоимость одного карата прогрессивно возрастает с увеличением размеров и массы камней: если, скажем, бриллиант-каратник (массой 1 кар) стоит определенную сумму, то двухкаратник (при том же качестве) оценивается не вдвое дороже, а гораздо выше.

 

Оптические свойства

В ряду физических свойств драгоценных камней оптические свойства играют главенствующую роль, определяя их цвет и блеск, сверкание («огонь») и люминесценцию, астеризм, иризацию и прочие световые эффекты. При испытании и идентификации драгоценных камней также все большее место отводится оптическим явлениям.

Цвет

Цвет - первое, что бросается в глаза при взгляде на всякий драгоценный камень. Однако для большинства камней их цвет не может служить диагностическим признаком, так как многие из них окрашены одинаково, а некоторые выступают в нескольких цветовых обличиях.

Причиной различных окрасок является свет, то есть электромагнитные колебания, лежащие в определенном интервале длин волн. Человеческий глаз воспринимает только волны так называемого оптического диапазона - примерно от 400 до 700 нм. Эта область видимого света подразделяется на 7 главных частей, каждая из которых соответствует определенному цвету спектра: красному, оранжевому, желтому, зеленому, голубому, синему, фиолетовому. При смешении всех спектральных цветов получается белый цвет. Если, однако, какой-либо интервал длин волн абсорбируется («поглощается»), из смеси остальных цветов возникает определенная - уже не белая - окраска. Камень, пропускающий все длины волн оптического диапазона, кажется бесцветным; если же, напротив, весь свет поглощается, то камень приобретает самую темную из видимых окрасок - черную. При частичном поглощении света по всему видимому диапазону волн камень выглядит мутно-белым или серым. Но если, наоборот, абсорбируются только вполне определенные длины волн, то камень приобретает окраску, соответствующую смешению оставшихся непоглощенными частей спектра белого света. Главными носителями цвета - хромофорами, обусловливающими окраску драгоценных камней, - являются ионы тяжелых металлов: железа, кобальта, никеля, марганца, меди, хрома, ванадия и титана, способные абсорбировать определенные длины волн в видимой области. Эти ионы часто присутствуют в столь малых количествах, что даже не находят отражения в химических формулах.

Окраска циркона и некоторых других минералов вызывается не ионами-хромофорами, а деформациями кристаллической решетки, точнее, возникновением в ней радиационных дефектов под воздействием радиоактивного излучения, что вызывает селективное (избирательное) поглощение света.

На поглощение света и тем самым на окраску кристалла влияет также длина пути, проходимого в нем световыми лучами. Соответственно при шлифовке необходимо стремиться использовать это обстоятельство к максимальной выгоде для камня. Светлоокрашенные камни шлифуются более толстыми, а при огранке фасеты наносятся с таким расчетом, чтобы удлинить путь прохождения лучей сквозь камень, то есть усилить абсорбцию. Слишком темные камни, наоборот, следует шлифовать потоньше, чтобы несколько высветлить их. К примеру, темно-красный гранат-альмандин при шлифовке кабошоном высверливают с нижней стороны, чтобы сделать полым.

Цвет драгоценных камней зависит также от освещения, поскольку спектры искусственного (электрического) и дневного (солнечного) света различны. Существуют камни, на окраску которых искусственный свет оказывает неблагоприятное влияние (сапфир), и такие, которые при вечернем (искусственном) свете только выигрывают, усиливая свое сияние (рубин, изумруд). Но резче всего перемена цвета выражена у александрита: днем он выглядит зеленым, вечером - красным.

Несмотря на то что для драгоценных камней цвет играет столь большую роль, практические способы его объективной оценки (кроме случая алмаза) не разработаны. Сравнительные таблицы цветов - лишь весьма скудный суррогат, оставляющий широкий простор для субъективных суждений. Применяемые в научном цветоведении измерительные методы для ювелирной промышленности и торговли чересчур сложны и требуют слишком больших затрат.

Цвет черты

Цветовой облик драгоценных камней, относящихся к одной и той же группе минералов, может широко варьировать. Так, бериллы бывают всех цветов спектра, вплоть до бесцветных. Именно эта бесцветность и есть истинная, исходная, как говорят, собственная окраска берилла, отвечающая его химической формуле. Все другие цвета обусловлены присутствием посторонних примесных элементов-хромофоров. Собственные окраски, будучи постоянными, могут служить диагностическими признаками драгоценных камней. Если с нажимом провести камнем по пластинке неглазурованного шершавого фарфора - бисквита, то цвет оставленной на фарфоре черты выявит эту собственную окраску, так как тонкорастертый порошок ведет себя в отношении оптических свойств подобно тончайшей просвечивающей пластинке минерала. Например, серо-стальной гематит дает вишнево-красную черту, латунно-желтый пирит - черную, голубой содалит - белую. При определении более твердых минералов рекомендуется сначала стальным напильником соскоблить немного порошка, а затем растереть его на бисквитной пластинке. Этот способ диагностики представляет особый интерес для коллекционеров. У ограненных камней во избежание их повреждения цвет черты определять не следует. Ниже представлена сводная таблица цвета черты самоцветов, поделочных камней и некоторых коллекционных минералов.

[При отсутствии специальной бисквитной пластинки для определения цвета черты (порошка) минералов можно с успехом использовать фарфоровое блюдце или тарелку, при этом образцом чертят по ободку на обратной стороне донышка. Особенно удобен для тех же целей бой крупных фарфоровых изоляторов: поверхность их излома по существу представляет собой настоящий бисквит. - Пер.]

Цвет черты самоцветов, поделочных камней и некоторых коллекционных минералов

Цвет черты белый, бесцветный, серый

Авантюрин ,  Авантюриновый полевой шпат ,  Агат ,  Агат, моховой ,  Аквамарин ,  Аксинит ,  Актинолит ,  Алебастр ,  Александрит ,  Альмандин ,  Амазонит ,  Амблигонит ,  Аметист ,  Аметистовый кварц ,  Анатаз ,  Ангидрит ,  Андалузит ,  Апатит ,  Апофиллит ,  Аугелит ,  Барит ,  Баритокальцит ,  Бенитоит ,  Берилл ,  Бериллонит ,  Бирюза ,  Битовнит ,  Бразилианит ,  Варисцит ,  Везувиан ,  Виллемит ,  Витерит ,  Галлиант ,  Гамбергит ,  Ганит ,  Гаюин ,  Гейлюссит ,  Гемиморфит ,  Гессонит ,  Гидденит ,  Гиперстен ,  Говлит ,  Горный хрусталь ,  Гроссуляр ,  Данбурит ,  Датолит ,  Демантоид ,  Джевалит (фианит) ,  Диопсид ,  Доломит ,  Жадеит ,  Жад-альбит ,  Жемчуг ,  ИАГ-гранат ,  Изумруд ,  Кальцит ,  Канкринит ,  Касситерит ,  Кварц ,  Дымчатый кварц ,  Розовый кварц ,  Кианит ,  Колеманит ,  Кораллы ,  Кордиерит ,  Корнерупин ,  Кунцит ,  Лабрадорит ,  Лазулит ,  Лейцит ,  Лунный камень ,  Магнезит ,  Молдавит ,  Натролит ,  Нефрит ,  Обсидиан ,  Опал ,  Ортоклаз ,  Перидот ,  Периклаз ,  Перистерит ,  Петалит ,  Празиолит ,  Пренит ,  Пироп ,  Родолит ,  Родонит ,  Родохрозит ,  Рубин ,  Санидин ,  Сапфир ,  Сепиолит ,  Серпентин ,  Сидерит ,  Силлиманит ,  Сингалит ,  Скаполит ,  Слоновая кость ,  Смитсонит ,  Содалит ,  Спессартин ,  Ставролит ,  Стеатит (жировик) ,  Стекло ,  Страз ,  Танзанит ,  Титанит ,  Томсонит ,  Топаз ,  Тремолит ,  Турмалин ,  Уваровит ,  Улексит ,  Фабулит ,  Фенакит ,  Флюорит ,  Фосгенит ,  Халцедон ,  Хлоромеланит ,  Хризоберилл ,  Хризоколла ,  Хризопраз ,  Цейлонит ,  Целестин ,  Церуссит ,  Циркон ,  Цитрин ,  Шеелит ,  Шпинель ,  Эвклаз ,  Элеолит ,  Энстатит ,  Эпидот ,  Янтарь ,  Яшма

Цвет черты красный, розовый, оранжевый

Гематит ,  Крокоит ,  Куприт ,  Прустит ,  Рутил ,  Танталит ,  Цинкит ,  Яшма

Цвет черты желтый, оранжевый, коричневый

Апатит ,  Вивианит ,  Вульфенит ,  Гагат ,  Гиперстен ,  Ильменит ,  Касситерит ,  Крокоит ,  Куприт ,  Прустит ,  Псиломелан ,  Рутил ,  Сера ,  Сфалерит ,  Танталит ,  Тигровый глаз ,  Хромит ,  Цинкит ,  Яшма

Цвет черты зеленый, желто-зеленый, сине-зеленый

Гарниерит ,  Диоптаз ,  Малахит ,  Пирит ,  Халькопирит ,  Хризоколла

Цвет черты синий, сине-зеленый, красно-фиолетовый

Азурит ,  Диоптаз ,  Дюмортьерит ,  Лазурит

Цвет черты черный, серый

Апатит ,  Гагат ,  Ганит ,  Гиперстен ,  Ильменит ,  Пирит ,  Псиломелан ,  Танталит ,  Халькопирит ,  Церуссит ,  Эпидот

Изменение окраски

Бывают драгоценные камни, цвет которых с течением времени меняется. Так, аметист, розовый кварц и кунцит на солнечном свету постепенно выцветают вплоть до полного обесцвечивания. Но подобное самопроизвольное изменение окраски, обусловленное естественными причинами, в мире драгоценных камней составляет исключение. Гораздо чаще изменение окраски вызывается вмешательством человека, направленным на «облагораживание» самоцветов.

Наиболее известным примером такого рода является, по-видимому, «обжиг» аметиста. Будучи нагрет до нескольких сотен градусов, первоначально фиолетовый камень приобретает светлую золотисто-желтую (цитриновую), красно-коричневую, зеленую или молочно-белую окраску. Большинство встречающихся в продаже цитринов и все празиолиты представляют собой преобразованные аметисты.

Менее привлекательные цвета могут быть путем нагревания трансформированы в другие, более красивые и популярные. Например, аквамарины зеленоватых оттенков становятся после обжига голубыми (цвета морской воды), слишком темные турмалины высветляются, синие турмалины превращаются в зеленые. Обжиг красновато-коричневых гиацинтов (разновидность циркона) позволяет получить как алмазоподобные цирконы, так и цирконы аквамаринового цвета (синие старлиты).

Изменения цвета драгоценных камней достигают также с помощью рентгеновского излучения, а с недавних пор - посредством бомбардировки потоками элементарных частиц в атомном реакторе. Измененные цвета при этом производят настолько естественное впечатление, что простым глазом распознать вмешательство человека невозможно. Искусственное происхождение подобных окрасок устанавливается лишь с помощью специальных сложных исследований. Но в некоторых случаях полученные такими способами цвета оказываются нестойкими; «облагороженные» камни могут со временем вновь побледнеть, приобрести другой цвет или покрыться пятнами.

Изменение окраски пористых камней, таких, как лазурит, бирюза, жемчуг и агат, достигается путем их пропитки красителями. Этот способ воздействия на цвет драгоценных камней был известен уже в античности. Всякие искусственные изменения окраски драгоценных камней должны указываться при продаже, исключение составляют обожженные камни и окрашенные агаты; обычно эти требования регламентированы соответствующими документами, принятыми во многих странах.

Информация, таблицы и фото Книга "Мир камня" В. Шуман том 2

ПРОДОЛЖЕНИЕ СЛЕДУЕТ ......

www.livemaster.ru

Шкала Мооса. Твердость по шкале Мооса

Шкала Мооса - 10-балльная шкала, созданная Карлом Фридрихом Моосом в 1812 году, которая позволяет сравнивать твердость минералов. Шкала дает качественную, а не количественную оценку твердости того или иного камня.

История создания

Для создания шкалы Моос использовал 10 эталонных минералов - тальк, гипс, кальцит, флюорит, апатит, ортоклаз, кварц, топаз, красный корунд и алмаз. Минералы он разместил в порядке возрастания их твердости, приняв в качестве отправной точки то, что более твердый минерал царапает более мягкий. Кальцит, например, царапает гипс, а на кальците царапины оставляет флюорит, и все эти минералы заставляют крошиться тальк. Так минералы получили соответствующие значения твердости в шкале Мооса: мел -1, гипс - 2, кальцит - 3, флюорит - 4. Дальнейшие исследования показали, что минералы, твердость которых ниже 6, царапаются стеклом, те, твердость которых выше 6 - царапают стекло. Твердость стекла по данной шкале составляет приблизительно 6,5.

Камни, твердость которых больше 6, обрабатываются алмазом.

Шкала Мооса предназначена лишь для грубой оценки твердости минералов. Более точный показатель - абсолютная твердость.

Расположение минералов в шкале Мооса

Минералы в шкале расположены в порядке твердости. Самый мягкий имеет твердость 1, царапается ногтем, например, тальк (мел). Далее идут несколько более твердые минералы - улексит, янтарь, мусковит. Их твердость по шкале Мооса невелика - 2. Такие мягкие минералы не шлифуются, что ограничивает их применение в ювелирном деле. Красивые камни с невысокой твердостью относятся к поделочным, и стоят обычно недорого. Из них часто изготавливают сувениры.

Минералы с твердостью от 3 до 5 легко царапаются ножом. Гагат, родохрозит, малахит, родонит, бирюза, нефрит часто шлифуются кабошоном, хорошо полируются (обычно с применением оксида цинка). Эти минералы не устойчивы к воздействию воды.

Твердые ювелирные минералы, алмазы, рубины, изумруды, сапфиры, топазы и гранаты, обрабатывают в зависимости от прозрачности, окраски, наличия примесей. Звездчатые рубины или сапфиры, например, гранят кабошонами, чтобы подчеркнуть необычность камня, прозрачные разновидности гранят овалами, кругами или каплями, наподобие бриллиантов.

Твердость по шкале МоосаПримеры минералов
1Тальк, графит
2Улексит, мусковит, янтарь
3Биотит, хризоколла, гагат
4Родохрозит, флюорит, малахит
5Бирюза, родонит, лазуирит, обсидиан
6Бенитоит, ларимар, лунный камень, опал, гематит, амазонит, лабрадор
7Аметист, гранат, разновидности турмалина индиголит, верделит, рубеллит, шерл), морион, агат, авантюрин, цитрин
8Зеленый корунд (изумруд), гелиодор, топаз, пейнит, тааффеит
9Красный корунд (рубин), синий корунд (сапфир), лейкосапфир
10Алмаз

Ювелирные камни

Все минералы, твердость которых по шкале меньше 7, считаются мягкими, тех, что выше 7 - твердыми. Твердые минералы поддаются обработке алмазами, многообразие возможных огранок, прозрачность и редкость делают их идеальными для использования в ювелирном деле.

Твердость алмаза по шкале Мооса составляет 10. Алмазы гранятся таким образом, чтобы при обработке потеря в массе камня была минимальной. Обработанный алмаз и называют бриллиантом. Благодаря своей высокой твердости и устойчивости к высоким температурам, бриллианты практически вечны.

Твердость рубина и сапфира несколько ниже твердости алмаза и составляет 9 по шкале Мооса. Ценность этих камней, а также изумрудов, зависит от окраски, прозрачности и количества дефектов - чем прозрачнее камень, интенсивнее цвет и чем меньше в нем трещин, тем выше цена.

Полудрагоценные камни

Несколько ниже алмаза и корунда ценятся топазы и гранаты. Их твердость по шкале Мооса составляет 7-8 баллов. Эти камни хорошо поддаются обработке алмазом. Цена напрямую зависит от цвета. Чем насыщеннее цвет топаза или граната, тем дороже будет стоить изделие с ним. Наиболее высоко ценятся чрезвычайно редкие желтые топазы и фиолетовые гранаты (маджориты). Последний камень настолько редок, что цена его может быть выше, чем чистого бриллианта.

Цветные турмалины: розовый (рубеллит), синий (индиголит), зеленый (верделит), арбузный турмалин также относят к полудрагоценным камням. Прозрачные турмалины высокого качества встречаются в природе очень редко, потому и стоят иногда гораздо дороже пиропов и голубых топазов, а за арбузными (розово-зелеными) камнями коллекционеры не устают охотиться. Твердость камней по шкале Мооса довольно высока и составляет 7-7,5 баллов. Эти камни хорошо поддаются шлифовке, не меняют цвет, а найти ювелирное изделие с ярким прозрачным турмалином - настоящая удача.

Черная разновидность турмалина (шерл) относится к поделочным камням. Шерл твердый, но вместе с тем хрупкий камень, который может легко разрушиться при обработке. Именно по этой причине черные турмалины чаще всего продают необработанными. Шерл считается сильнейшим защитным талисманом.

Промышленное применение

Минералы и горные породы с высокой твердостью находят широкое применение в промышленности. Например, твердость гранита по шкале Мооса - от 5 до 7, в зависимости от количества в нем слюды. Эта твердая горная порода широко используется в строительстве в качестве материала для отделки.

Бесцветные сапфиры или лейкосапфиры, несмотря на высокую твердость и относительную редкость, не пользуются спросом у ювелиров, зато широко применяются в лазерных и других оптических установках.

Практическое применение шкалы

Несмотря на то что шкала твердости Мооса дает только качественную, а не количественную оценку, она широко используется в геологии. С помощью шкалы Мооса геологи и минералоги могут приблизительно идентифицировать неизвестную породу в зависимости от ее подверженности царапанью ножом или стеклом. Почти во всех справочных источниках указывается твердость минералов именно по шкале Мооса, а не их абсолютная твердость.

В ювелирном деле шкала Мооса также широко применяется. От твердости камня зависит способ его обработки, возможные варианты шлифовок и необходимые для этого инструменты.

Другие шкалы твердости

Шкала Мооса - не единственная шкала твердости. Существует несколько других шкал, созданных на основе способности минералов и других материалов сопротивляться деформации. Самая известная из них - шкала Роквелла. Метод Роквелла прост - он основан на измерении глубины проникновения идентора вглубь исследуемого материала. В качестве идентора обычно используется алмазный наконечник. Стоит заметить, что минералы редко подвергаются исследованию по методе Роквелла, обычно он применяется для металлов и сплавов.

Похожим образом строится шкалы твердости Шора. Метод Шора позволяет определять твердость как металлов, так и более эластичных материалов (каучука, пластмассы).

fb.ru

10 ступеней шкалы Мооса

Эту шкалу используют для измерения твердости минералов. Каков он ― рейтинг минералов по твердости?

Кто на свете всех… тверже? Это вовсе не праздный вопрос. У технических специалистов практическая цель: какой материал каким можно обрабатывать, а какой отложить в сторонку? Шкалу относительной твердости минералов, то есть рейтинг минералов по твердости, придумал немецкий минералог и геолог Карл Фридрих Христиан Моос. В 1811 году он предложил выбрать 10 эталонных минералов, расположив их по мере возрастания твердости. А твердость остальных сравнивать с эталонными. Например, если один минерал оставляет царапины на эталоне уровня 2, а на нем самом остаются отметки от эталона уровня 3, то значит твердость нашего минерала где-то 2-3. Как вы догадываетесь, точность характеристик у Мооса была весьма приблизительной, но его шкала твердости прижилась и используется по сей день, несмотря на то, что появились новые методы измерений, специальные инструменты и более точные параметры измерения твердости. Вероятно, дело в удачно выбранных эталонных минералах. Так что же это за ступеньки в лестнице твердости по Моосу? 

1. Тальк 

Пожалуй, что не найдется человека,  который никогда в жизни не сталкивался с тальком. Но в определенном возрасте: тальк используют в качестве детской присыпки. Тальк обрел популярность с развитием резиновой промышленности: пересыпанные тальком резиновые поверхности не слипаются между собой и не так изнашиваются при трении друг о друга. Поэтому тальк можно встретить внутри резиновых перчаток, велосипедных шин. Жирный на ощупь тальк уменьшает трение, поэтому  ошибается тот, кто считает, что именно тальком натирают руки тяжелоатлеты и гимнасты. Все не так: спортсменам нужно улучшить сцепление рук со снарядами, их белый порошок – это магнезия.

Пищевая добавка Е553b – это тоже тальк. Как и составная часть некоторых таблеток и косметических средств. Так что тальк употребляют не только наружно, но и внутрь. Первое место на шкале Мооса тальку обеспечил тот факт, что на нем может оставить черту даже ноготь, а им самим не поцарапать никакой минерал.

Одну ступеньку с тальком делит минерал графит. Запомним это, а удивляться будем после. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Гипс 

Второй эталон твердости тоже знаком всем, хотя бы по названию. Все знают, что если порошок гипса развести в воде, то полученной кашицей можно загипсовать, то есть зафиксировать в неподвижности ногу-руку. Эту  кашицу можно залить в форму и получить розетку или карниз, или скульптуру, можно сделать из нее массу других несиловых строительных конструкций. Не все знают, что порошок для этих операций – это не просто измельченный минерал, а предварительно обожженный, нагретый. Тогда он и приобретает нужные свойства – размягчаться, а потом застывать. Свойства эти замечены и используются издревле: в Сирии обнаружены гипсовые статуэтки конца четвертого тысячелетия до нашей эры. Точнее сказать, статуэтки не гипсовые, а алебастровые: алебастр – это тоже гипс, только его зернистая разновидность. Мы привыкли к белым гипсу и алебастру, но встречается минерал других цветов: розовый, желтый. В США, Италии и Китае отыскали даже черный алебастр.  

Гипс тоже  можно поцарапать ногтем, а сам он оставляет следы на тальке. Вот вам и вторая ступень.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Кальцит 

Кальцит – это, выражаясь языком химиков, карбонат кальция, то есть кальциевая соль угольной кислоты. На геологическом языке это породообразующий минерал. Кальцит входит в известняки, мергели, мел. Мрамор целиком состоит из кальцита. А биологи называют кальцит самым распространенным биоминералом: из него состоят раковины и скелеты беспозвоночных.

Кристалл кальцита –  то, например, кристалл исландского шпата, чудесного минерала, в котором впервые обнаружили двойное лучепреломление, то есть разделение падающего на кристалл луча света на два. Так вот этим кристаллом вполне можно провести заметную черту на гипсе. Сам кальцит царапается медной монетой. И не только кальцит. Такая же твердость по Моосу, например, у золота и серебра. А вот эталон все же кальцит. Наверное, потому, что чаще встречается.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Флюорит 

Эталон 4-й ступени шкалы Мооса часто называют плавиковым шпатом. Название флюорит, то есть «текучий» на латыни, минерал получил по основному применению: в металлургии его добавляют в расплав, чтобы получились легкоплавкие шлаки. А вот от названия плавиковый шпат пошло название фтористоводородной кислоты – плавиковая кислота. Производство плавиковой кислоты, которая растворяет стекло,  –  это еще одно современное применение флюорита.

Минерал известен издавна: в древности из него делали всякие красивые мелочи – вазочки, шкатулки, посуду, украшения. Флюорит бывает разных цветов: желтый, зеленый, синий, красный, даже фиолетово-черный. Безделушки из него получались красивые и ценились выше золота. При нагревании минерал светится, что придает изделиям из него особый шарм.

Флюорит используют в ювелирной промышленности до сих пор. Из редких бесцветных кристаллов делают линзы. Обрабатывать такие линзы легко, ведь флюорит легко царапается ножом или стеклом. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Апатит 

Странное название – от греческого слова со значением «обманываю»  – этот минерал из класса фосфатов получил за то, что его многообразные виды часто вводили в заблуждение горе-специалистов, и они путали апатит то с бериллом, то с турмалином, то еще с чем-нибудь. Моос рассчитывал, что апатит обманывать впредь не будет, и назначил его эталоном для пятой ступени твердости минералов. Апатит, в отличие от флюорита, уже с трудом царапается ножом и стеклом. Вот эта небольшая разница и переводит апатит на другую ступень шкалы Мооса.

Апатит – сырье для производства фосфорных удобрений, фосфора и фосфорной кислоты. Для ювелирной промышленности кристаллы апатита подходят мало. Самый крупный кристалл, пригодный для ювелирного использования, нашли в Кении, весил он 147 карат, то есть меньше 30 граммов.

Промышленные месторождения апатитов не очень многочисленны. И самое большое в мире – Хибинское на Кольском полуострове в России. Там даже город Апатиты есть. 

 

 

 

 

 

 

 

 

 

 

 

 

6. Ортоклаз 

Ортоклаз, как и кальцит, очень распространенный породообразующий минерал из класса силикатов. Он относится к полевым шпатам. Ортоклаз – это, иначе говоря, калиевый полевой шпат.

Как ювелирный или поделочный камень значения практически не имеет. Прозрачные или слегка желтые кристаллы родом с Мадагаскара иногда гранят в угоду коллекционерам. Используют ортоклаз как сырье для производства фарфора и электрокерамики.

Ортоклаз можно царапать напильником, и Моос назначил его эталоном в своей шкале под номером шесть.

Примерно такую же твердость – от 5,5 до 6,5 имеет куда более привлекательный опал. Но эталоном его не назначить: разновидностей много, а твердость у них колеблется. Зато многообразие видов и расцветок опала делают его замечательным поделочным камнем. Он известен с древности, и это подтверждает, в частности, его название: ведь на санскрите «упалах» это просто «камень».

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Кварц 

Химическая формула кварца проста: SiO2, то есть диоксид кремния. Кварц – самый распространенный минерал в земной коре: по массе он составляет более 60%. Кварц видели все – это обыкновенный песок. А еще авантюрин, агат, горный хрусталь, аметист, цитрин, кошачий глаз, соколиный глаз, тигровый глаз и прочая и прочая.

В массе своей обыкновенный кварц идет на изготовление стекла, в том числе особого кварцевого, и керамики. Кристаллы кварца обладают свойством вырабатывать электрический заряд на поверхности при деформации, такие материалы называют пьезоэлектрики. И применяют их в разнообразной современной аппаратуре.

Многочисленные разноцветные виды кварцев – ювелирные камни. Известны в этом качестве с древности и едва не на всех континентах. Интересное применение аметисту нашли древние греки: они опускали кристалл в сосуд с вином и разводили вино водой до цвета аметиста. И только тогда пили.

Мооса ни история, ни красота кварца не волновали. Достаточно было свойств: кварцем можно слегка поцарапать стекло, а сам он обрабатывается алмазом. Этого достаточно, чтобы угодить в эталоны седьмого уровня. 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Топаз 

Эталон восьмой ступени шкалы твердости, камень, которым можно поцарапать стекло и даже кварц, выбран достойный. Полудрагоценный камень топаз получил свое название по месту первых находок на острове Топазиос в Красном море. А на Урале его звали «тяжеловесом»: удельный вес у него большой. Русские топазы, по мнению знаменитого минералога академика Ферсмана, «занимают исключительное место среди топазов всего света». В уральской Мурзинке топазы нежно-голубые, в Санарке и Каменке – красновато-фиолетовые, на украинской Волыни голубые и винно-желтые. В 1965 году там нашли винно-желтый топаз весом 117 килограммов. Рекорд же массы у бразильского топаза из провинции Минас-Жерайс, он весил 5 тонн 8 центнеров.

Кстати, именно пятью топазами украшен знаменитый орден «Золотого руна», который хранится в Алмазном фонде России. А вот на королевскую корону Португалии топаз попал по ошибке: камень бразильского происхождения был прозрачным. И его спутали с алмазом. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. Корунд 

Почти вершина твердости, эталон девятой ступени шкалы. Обработать корундом можно практически всё, его же – только алмазом.

Драгоценные камни рубин и сапфир – это тоже корунды. На Руси их называли яхонтами, соответственно, алым и лазоревым. Так что будете к кому эпитет яхонтовый прилагать, так не забывайте, что это  свидетельство не только красоты  и высокой цены, но еще и твердости.

Кроме красного и синего встречаются еще корунды зеленые и фиолетовые. Эти называют восточными изумрудом и аметистом. Желтые и оранжево-желтые корунды называют красивым словом падпараджа. Лейкосапфир или восточный алмаз – прозрачный корунд. Все эти камни имеют ту или иную ювелирную ценность. Рубин – высокую, сапфир – чуть ниже, и так далее.

Но есть еще и корунд обыкновенный – непрозрачный, сероватого цвета. У него ценность техническая. Твердость отправляет корунд в абразивные материалы, а высокая температура плавления – в огнеупоры. И всюду он хорош.

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10. Алмаз 

Вот и вершина шкалы твердости. В 1600 раз тверже эталона №1 – талька. На нем нельзя оставить отметину никаким другим минералом. Стекло алмаз режет как...  Как алмаз и режет. И вот ведь удивительные шутки природы: графит с первой ступени твердости и алмаз – один и тот же химический элемент, углерод. Только, говоря мудреными химическими словами,  аллотропные формы разные.

Еще древние греки называли этот камень несокрушимый – адамас. В алмаз это слово переделали арабы. Но не думайте, что кристалл алмаза такой уж несокрушимый, он твердый, но хрупкий: ударить покрепче, и он рассыплется.

Алмаз не только самый твердый, но и драгоценнейший. Как бы высоко не ценились рубины-сапфиры-изумруды, бриллианты, то есть ограненные алмазы, ценятся выше. И остаются самыми лучшими друзьями девушек.

Помимо прозрачных и бесцветных встречаются еще желтые, розовые, голубые, зеленые и даже красные камни. Алмазы находят в Африке, Азии, Австралии, Америке. По добыче алмазов Россия занимает второе место в мире. А недавно обнародована информация о мощнейшем месторождении – в триллионы карат – на границе Якутии и Красноярского края. 

scientificrussia.ru

Шкала Мооса - простой и информативный способ определения относительной твердости минералов

Это широко известный, названный по фамилии автора, метод определения относительной твердости минералов при помощи царапания. Известна данная методика с начала девятнадцатого века, когда и была предложена автором — Фридрихом Моосом.

Собственно, сама шкала представляет собой набор образцов эталонных минералов из десяти экземпляров, причём расположены они в порядке нарастания твердости.

Шкала Мооса

Индексы системы Мооса от 1 до 10 обозначают десять распространённых минеральных веществ - от талька, как представителя минимальной твердости, до алмаза - в качестве эталона максимальной минеральной твердости.

Для определения прочности образца путем подбора находится самый твердый из эталонных минералов из набора, который данный образец способен поцарапать; в соответствии с номером позиции найденного эталонного экземпляра из набора, который поцарапал искомый образец, ему присваивается числовое значение шкалы.

По задумке автора либо испытываемый минерал царапает эталон, говоря таким образом, что твердость его по шкале Мооса выше, либо он царапается эталоном из набора, в этом случае выше твердость эталонного образца. Например, если материал повреждается апатитом, но не царапается флюоритом, то его твердость определяется в диапазоне от четырех до пяти по шкале Мооса. “Твердость 4-5” - так будет звучать характеристика данного минерала.

Данная методика предназначена для предварительной, довольно грубой сравнительной оценки степени твердости материала, то есть информирует лишь об относительной прочности материала.

Рейтинг минералов по твердости ("ступени по Моосу")

  1. Тальк. Это очень распространенное вещество, широко применяемое в промышленности, начиная с производства детской присыпки и заканчивая резиновой промышленностью. Из всех эталонных материалов шкалы Мооса тальк обладает самой низкой прочностью. По степени прочности на одном уровне с тальком находится графит.
  2. Гипс. Второй эталон твердости также очень распространен и популярен. Общеизвестно, если порошок гипса разболтать в воде, то при высыхании полученная кашица превращается в достаточно твердый материал. Это свойство гипса широко используется как в медицине, так и в архитектуре. Но не все знают, что белый порошок - это не просто измельченный минерал, а уже прошедший предварительную обработку - нагретый и обожженный. Именно так он приобретает свое полезное свойство - размягчаться, а затем вновь затвердевать. Гипс, как и тальк, можно поцарапать ногтем; но гипс оставляет следы на тальке, значит, в рейтинге твердости стоит уровнем выше. Итак, его ступень - 2.
  3. Кальцит — карбонат кальция. Входит в состав мела, известняков. Из кальцита целиком состоит мрамор. А биологи отнесли кальцит к биоминералам, ведь из него состоят раковины и скелеты беспозвоночных. Так вот, по методу определения прочности Мооса кальцит тверже гипса (способен оставить на нем царапину), а сам, в свою очередь, может быть поцарапан монеткой из меди. Примерно такая же твердость по Моосу присуща золоту и серебру.
  4. Флюорит. Четвертый эталон шкалы Мооса называют плавиковым шпатом, поскольку что производство плавиковой кислоты - это одно из направлений применения флюорита. Из бесцветных кристаллов флюорита возможно производство линз. Поскольку флюорит легко царапается стеклом, такие линзы не так уж и долговечны. Зато легко обрабатываются. Стало быть, твердость стекла выше твердости флюорита.
  5. Апатит. Стеклом все еще царапается, но уже с трудом. Эта незначительная разница и ставит его ступенью выше флюорита.
  6. Калиевый полевой шпат. Ювелирной или поделочной ценности не имеет, применяется в качестве сырья для производства электрокерамики и фарфора. В шкале Мооса занимает шестую позицию. Ориентировочно такую же степень прочности ( 5,5 -6,5) имеет опал. Но эталоном его не сделать, поскольку опал имеет много аналогов и разновидностей, степень прочности которых существенно колеблется.
  7. Кварц. С точки зрения химии это диоксид кремния. Это - наиболее широко распространенный минерал в земной коре. Кварц способен оставить царапины на стекле, а сам обрабатывается алмазом. Так и попал он на седьмую позицию шкалы Мооса.
  8. Топаз. Этим камнем можно поцарапать стекло, и даже кварц.
  9. Корунд. Уступает в прочности только алмазу. Обработать корундом можно практически все минералы. К корундам относятся такие драгоценные камни, как рубин и сапфир - яхонты, как называли их на Руси.
  10. Алмаз. Вот он - пик шкалы твердости Мооса. В 1600 раз тверже эталона номер один. Никакой из минералов не оставляет отметин на гранях алмаза. Зато сам он способен разрезать стекло.

Интересные факты

  • Материалы, имеющие индекс ниже 7, считаются мягкими, выше 7 - твердыми.
  • В целом подавляющее большинство природных соединений имеют индекс от 2 до 6.
  • Минерал графит, стоящий у подножия "лестницы" Мооса, и алмаз, с последней ступени, имеют одинаковый химический состав (оба они состоят из углерода).

kamni.guru

Шкала твердости Мооса

Мы знаем, что камни и минералы – это твердые вещества. Но много кто не знает, что их твердость можно определить при помощи специальной шкалы. Создана она была еще в 19 веке минералогом из Германии Фридрихом Моосом и с тех пор носит его имя. Цель создания шкалы Мооса – оценка твердости камней путем механического повреждения одним элементом другого. Таким образом, работает схема «мягче-плотнее» и в процессе выясняется, какая относительная твердость минералов.

Основной принцип

Шкала Мооса содержит 10 минералов и принцип ее работы заключается в том, что каждый элемент в ней своими острыми углами царапает соседний. Для того, чтобы было удобнее, можно на один конец металлической трубки насадить камень, закрепив его на эпоксидной смоле. Затем эталонным минералом проводите по испытуемому камню, царапая его же. Под влиянием острия эталонного камня, проверяемый минерал будет деформироваться, несмотря не его хрупкость. Царапать необходимо стараться осторожными, нерезкими движениями, чтобы избежать каких-либо повреждений образца. Когда твёрдость камня проверена и понятно ее приближенность к нужному стандарту, сделанную царапину нужно аккуратно протереть и рассмотреть под увеличительным стеклом. Это необходимо для того, чтобы наверняка удостовериться, что царапина была сделана.

В наше время начали выпускать специальные карандаши и в них встроили вместо грифелей минеральные стержни, которые и являются составляющими шкалы Мооса. Также для определения твердости различных минералов можно использовать и подручные средства, такие как, карандаш, кухонная соль, монета из меди, гвоздь, стекло, нож из стали, и напильник. В большинстве случаев проверку лучше начинать со стекла, так как его твердый индекс равен середине показателей по шкале Мооса. Но знайте и то, что домашние приспособления и предметы не всегда могут показать правильный результат. Не стоит обходить стороной и тот факт, что во всех случаях проверки на прочность необходимо испытывать только свежую сторону камня.

Раньше определить твердость по Моосу могли только либо коллекционеры драгоценных камней, либо ювелиры. Сейчас же развили искусственное взращивание минералов, например, таких, как кварцевый камень, поэтому проверки по шкале Мооса можно получить не совсем точные. Среди недостатков данного способа можно отметить один – возможность повреждения камня, но преимущество неслабое – нет необходимости в наличие специальной лаборатории и не нужно много тратиться на оборудование.

Шкала твердости Фридриха Мооса рассортировала минералы по такому принципу – те, которые проходят проверку и их показатели превышают отметку 7, являются твердыми камнями. А вот те, которые ниже семи слабые и поддаются стиранию обычной пылью, потому как в составе этой пыли есть микроскопические частицы кварца, а они, в свою очередь по шкале имеют седьмую прочность. Минералы, имеющие показатели ниже семизначной отметки, достаточно скоро тускнеют, полировка их стирается, и очень царапаются при контактах с камнями, которые тверже их.

Существует специальная таблица минералов, по которой можно определить степень твердости по Моосу на царапанье и определить жесткость шлифования по Розивалю. Шкала Розиваля возникла после методики Мооса, которая и была взята за основу. Некие изменения коснулись только замены абстрактных номеров на значения твердости шлифовки. Показатели для этой шкалы получили при помощи такого устройства, как твердометр, где именно он показал измерение прочности камней при шлифовании их абразивами. Но, несмотря на то, что по шкале немецкого минералога можно получить меньшую точность, все же именно она более заманивает к использованию.

При исследовании камня важна не только его плотность, а еще и спайность. Это способность камней раскалываться по направлению своей кристаллической структуры и, таким способом, образовывать гладкие грани. Что интересно, камни могут раскалываться на кристаллики, которые абсолютно разные по форме.

Применение шкалы

Ювелиры уверенны, что необходимо обязательно учитывать при огранке спайность камня, так как он может расколоться и по граням самой этой спайности. Любопытный факт, что такие драгоценные камни как изумруд и аквамарин имеют очень слабую спайность, но это не отменяет того утверждения, что они являются очень хрупкими по своей прочности. Такие же сложности при работе с огранкой имеются и с топазами. У них совершенная спайность, которая строится перпендикулярно в направлении удлинения кристалла. При работе с ними нужно быть предельно осторожными. А вот алмаз имеет свойство распадаться на правильные восьмигранники, которые состоят из таких же правильных восьми треугольников.

Существует специальная таблица наипростейшего определения плотности камней, где можно наблюдать градацию минералов по сравнительной шкале Мооса. Под первым номером в ней размещен тальк, скоблить который можно и ногтем. Затем на ступень выше поднимается гипс, царапать его можно также, как и своего предшественника, указанного выше. Третье место досталось кальциту, прочность которого выявит медная монета. За кальцитом на четвертом месте расположился флюорит и его плотность способен определить и обычный нож. Пятое место за апатитом, в твердости которого удостовериться поможет все тот же кухонный нож, а вот седьмое место досталось ортоклазу, для определения, прочности которого понадобится напильник. Кварц забрал себе восьмое место и поцарапать его может стекло. На девятом месте «засел» корунд, оставив главное место для алмаза по шкале Мооса, как самый почетный и прочный минерал.

Может, кому-нибудь будет еще интересно узнать свойства гранита, который считается одним из самых твердых камней. Он достаточно вынослив и ему не страшны кислотное воздействие, какие-либо атмосферные явления, в том числе и перепады температур, он очень стойко терпит удары. Прочность его по Моосу равняется восьми, а кварцевых частиц в нем насчитывается не так уж и мало – до целых 70%.

alloberegi.ru


Смотрите также